化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2744-2755.DOI: 10.11949/0438-1157.20240217
收稿日期:
2024-02-29
修回日期:
2024-05-08
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
杨斌
作者简介:
王皓宇(1994—),男,博士研究生,wanghaoyuu@163.com
基金资助:
Haoyu WANG(), Yang YANG, Wenjie JING, Bin YANG(
), Yu TANG, Yi LIU
Received:
2024-02-29
Revised:
2024-05-08
Online:
2024-08-25
Published:
2024-08-21
Contact:
Bin YANG
摘要:
管内气液螺旋环状流动可以通过设置固定叶片的旋流器形成,旋流器的结构极大地影响了形成的螺旋环状流动的稳定性。对此,选取了四种典型旋流器结构开展三个典型来流工况下螺旋环状流形成的实验研究。通过图像处理结合概率密度函数(probability density function,PDF)拟合的方法分析了形成螺旋环状流的稳定性,同时结合液膜波动特性与旋流器内部作用过程分析发现:平板式及平板有中心柱式旋流器在不同来流工况下产生的液膜相较于螺旋叶片式A/B旋流器都更加稳定,相同工况下的失稳距离也更长,而螺旋叶片式A/B旋流器产生的螺旋环状流的稳定性较差,在更短的距离内即发生了螺旋环状流失稳现象;不同工况下液相折算速度的上升有助于提高液膜稳定性与螺旋环状流失稳距离,从而形成更稳定的螺旋环状流;叶片作用下流体内部压力梯度和气液相分布规律高度相关,压力梯度和周向速度是形成螺旋环状流动的主要因素,并且压力梯度和周向速度的大小一定程度决定了螺旋环状流动气液交界面的稳定性。
中图分类号:
王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755.
Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers[J]. CIESC Journal, 2024, 75(8): 2744-2755.
参数 | 平板式 | 平板有中心柱式 | 螺旋 叶片式A | 螺旋 叶片式B |
---|---|---|---|---|
叶片个数 | 4 | 4 | 4 | 4 |
叶片厚度 | 1 mm | 1 mm | 1 mm | 1 mm |
出口角度 | 45° | 45° | 45° | 45° |
扭转角度 | 180° | 180° | 180° | 180° |
中心柱直径 | — | 6 mm | 6 mm | 6 mm |
入口角度 | 45° | 45° | 90° | 45° |
叶片高度 | 24.5 mm | 24.5 mm | 38.5 mm | 38.5 mm |
表1 旋流器结构参数
Table 1 Structural parameters of swirler
参数 | 平板式 | 平板有中心柱式 | 螺旋 叶片式A | 螺旋 叶片式B |
---|---|---|---|---|
叶片个数 | 4 | 4 | 4 | 4 |
叶片厚度 | 1 mm | 1 mm | 1 mm | 1 mm |
出口角度 | 45° | 45° | 45° | 45° |
扭转角度 | 180° | 180° | 180° | 180° |
中心柱直径 | — | 6 mm | 6 mm | 6 mm |
入口角度 | 45° | 45° | 90° | 45° |
叶片高度 | 24.5 mm | 24.5 mm | 38.5 mm | 38.5 mm |
图11 不同旋流器产生螺旋环状流液膜厚度概率密度分布[泡状流(jg=0.17 m·s-1,jl =1.2 m·s-1)]
Fig.11 Probability density distribution of spiral annular flow film thickness generated by different swirlers [bubbly flow (jg=0.17 m·s-1, jl =1.2 m·s-1)]
图12 不同旋流器产生螺旋环状流液膜厚度概率密度分布[弹状流(jg=0.35 m·s-1,jl =1.2 m·s-1)]
Fig.12 Probability density distribution of spiral annular flow film thickness generated by different swirlers [slug flow(jg=0.35 m·s-1, jl =1.2 m·s-1)]
图13 不同旋流器产生螺旋环状流液膜厚度概率密度分布[环状流(jg=8 m·s-1,jl =0.8 m·s-1)]
Fig.13 Probability density distribution of spiral annular flow film thickness generated by different swirlers [annular flow(jg=8 m·s-1, jl =0.8 m·s-1)]
图14 平板式旋流器作用下jg=0.1 m·s-1、jl =0.1~0.6 m·s-1下的液膜波动图
Fig.14 Liquid film fluctuation diagrams at different liquid-phase equivalent velocities (jl =0.1—0.6 m·s-1) under the gas-phase equivalent velocity of jg=0.1 m·s-1 with a flat-vane swirler
图15 平板有中心柱式旋流器作用下jg=0.1 m·s-1、jl =0.1~0.6 m·s-1下的液膜波动图
Fig.15 Liquid film fluctuation diagrams at different liquid-phase equivalent velocities (jl =0.1—0.6 m·s-1) under the gas-phase equivalent velocity of jg=0.1 m·s-1 with a flat-vane swirler with hub
图16 平板式旋流器作用下jg=0.1 m·s-1、jl =0.4~0.6 m·s-1下PDF曲线
Fig.16 Probability density distribution diagram of different liquid-phase equivalent velocities (jl =0.4—0.6 m·s-1) under the gas-phase equivalent velocity of jg=0.1 m·s-1 with a flat-vane swirler
图17 平板旋流器作用下jg=0.1 m·s-1、jl =0.4~0.6 m·s-1下PDF曲线
Fig.17 Probability density distribution diagram of different liquid-phase equivalent velocities (jl =0.4—0.6 m·s-1) under the gas-phase equivalent velocity of jg=0.1 m·s-1 with a flat-vane swirler with hub
图18 螺旋叶片式A旋流器作用下jg=0.1 m·s-1、jl =0.1~0.6 m·s-1下的液膜波动图
Fig.18 Liquid film fluctuation diagrams at different liquid-phase equivalent velocities (jl =0.1—0.6 m·s-1) under the gas-phase equivalent velocity of jg=0.1 m·s-1 with a spiral -vane swirler A
图19 螺旋叶片式B旋流器作用下jg=0.1 m·s-1、jl =0.1~0.6 m·s-1下的液膜波动图
Fig.19 Liquid film fluctuation diagrams at different liquid-phase equivalent velocities (jl =0.1—0.6 m·s-1) under the gas-phase equivalent velocity of jg=0.1 m·s-1 with a spiral -vane swirler B
图20 jg=0.1 m·s-1,jl =0.1~0.6 m·s-1工况下不同旋流器作用下的螺旋环状流失稳距离
Fig.20 Stable distance of spiral annular flow under the action of different swirlers under operating conditions of jg=0.1 m·s-1 and jl=0.1—0.6 m·s-1
1 | Ofuchi C Y, Eidt H K, Rodrigues C C, et al. Multiple wire-mesh sensors applied to the characterization of two-phase flow inside a cyclonic flow distribution system[J]. Sensors, 2019, 19(1): 193. |
2 | 霍小倩, 徐英, 汪晶晗, 等. 气液螺旋环状流压降特性研究[J]. 化工学报, 2020, 71(12): 5506-5514. |
Huo X Q, Xu Y, Wang J H, et al. Study on pressure drop characteristics of gas-liquid swirl annular flow[J]. CIESC Journal, 2020, 71(12): 5506-5514. | |
3 | Kanizawa F T, Ribatski G. Two-phase flow patterns and pressure drop inside horizontal tubes containing twisted-tape inserts[J]. International Journal of Multiphase Flow, 2012, 47: 50-65. |
4 | Jafari M, Farhadi M, Sedighi K. Thermal performance enhancement in a heat exchanging tube via a four-lobe swirl generator: an experimental and numerical approach[J]. Applied Thermal Engineering, 2017, 124: 883-896. |
5 | Yang Y, Wang D, Niu P M, et al. Gas-liquid two-phase flow measurements by the electromagnetic flowmeter combined with a phase-isolation method[J]. Flow Measurement and Instrumentation, 2018, 60: 78-87. |
6 | Manglik R M, Bergles A E. Characterization of twisted-tape-induced helical swirl flows for enhancement of forced convective heat transfer in single-phase and two-phase flows[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021010. |
7 | Liu W, Bai B F. Swirl decay in the gas-liquid two-phase swirling flow inside a circular straight pipe[J]. Experimental Thermal and Fluid Science, 2015, 68: 187-195. |
8 | Liu L, Bai B F. Scaling laws for gas-liquid flow in swirl vane separators[J]. Nuclear Engineering and Design, 2016, 298: 229-239. |
9 | Liu L, Ying B B, Gu H Y, et al. Experimental study on the separation performance of a full-scale SG steam-water separator[J]. Annals of Nuclear Energy, 2020, 141: 107330. |
10 | Hanafizadeh B P. Modeling and simulation of downward vertical two-phase flow with pipe rotation[J]. Chemical Engineering Research & Design (Transactions of the Institution of Chemical Engineers), 2018, 137: 10-19. |
11 | Liu W, Bai B F. A numerical study on helical vortices induced by a short twisted tape in a circular pipe[J]. Case Studies in Thermal Engineering, 2015, 5: 134-142. |
12 | Rabha S, Schubert M, Grugel F, et al. Visualization and quantitative analysis of dispersive mixing by a helical static mixer in upward co-current gas-liquid flow[J]. Chemical Engineering Journal, 2015, 262: 527-540. |
13 | Shi S Y, Xu J Y, Sun H Q, et al. Experimental study of a vane-type pipe separator for oil-water separation[J]. Chemical Engineering Research and Design, 2012, 90(10): 1652-1659. |
14 | Liu W, Lv X F, Jiang S, et al. Two-phase flow pattern identification in horizontal gas-liquid swirling pipe flow by machine learning method[J]. Annals of Nuclear Energy, 2023, 183: 109644. |
15 | Zhang T X, Khezzar L, AlShehhi M, et al. Experimental investigation of air-water turbulent swirling flow of relevance to phase separation equipment[J]. International Journal of Multiphase Flow, 2019, 121: 103110. |
16 | Yue T, Chen J Y, Song J F, et al. Experimental and numerical study of upper swirling liquid film (USLF) among gas-liquid cylindrical cyclones (GLCC)[J]. Chemical Engineering Journal, 2019, 358: 806-820. |
17 | Zonta F, Marchioli C, Soldati A. Particle and droplet deposition in turbulent swirled pipe flow[J]. International Journal of Multiphase Flow, 2013, 56: 172-183. |
18 | Yang Y, Wen H, Chao Z, et al. Measurement of high-water-content oil-water two-phase flow by electromagnetic flowmeter and differential pressure based on phase-isolation[J]. Flow Measurement and Instrumentation, 2022, 84: 102142. |
19 | Liu W, Lv X F, Bai B F. Axial development of air-water annular flow with swirl in a vertical pipe[J]. International Journal of Multiphase Flow, 2020, 124: 103165. |
20 | Meng J, Liang F C, Wang S G, et al. Experimental investigation of horizontal gas-liquid swirling flow characteristics using dual wire-mesh sensors[J]. International Journal of Multiphase Flow, 2022, 149: 103971. |
21 | Liu L, Bai B F. Experimental study and similarity analysis of separation efficiency of swirl-vane separator[J]. Nuclear Engineering and Design, 2020, 359: 110442. |
22 | Wang S L, Rao Y C, Wu Y X, et al. Experimental research on gas-liquid two-phase spiral flow in horizontal pipe[J]. China Petroleum Processing & Petrochemical Technology, 2012, 14(3): 24-32. |
23 | Yang Y, Wang D, Niu P M, et al. Measurement of vertical gas-liquid two-phase flow by electromagnetic flowmeter and image processing based on the phase-isolation[J]. Experimental Thermal and Fluid Science, 2019, 101: 87-100. |
24 | Wei P K, Wang D, Niu P M, et al. Separation of high velocity wet gas by phase-isolation and split-flow method[J]. Chemical Engineering Research and Design, 2020, 160: 105-118. |
25 | Rocha A D, Bannwart A C, Ganzarolli M M. Numerical and experimental study of an axially induced swirling pipe flow[J]. International Journal of Heat and Fluid Flow, 2015, 53: 81-90. |
26 | 罗小明, 高奇峰, 刘萌, 等. 轴流式气-液旋流分离器分离特性[J]. 石油学报(石油加工), 2020, 36(3): 592-599. |
Luo X M, Gao Q F, Liu M, et al. Separation characteristics of axial-flow gas-liquid cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 592-599. | |
27 | Cai B W, Wang J J, Sun L C, et al. Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR[J]. Progress in Nuclear Energy, 2014, 74: 1-13. |
28 | Donniacuo A, Charnay R, Mastrullo R, et al. Film thickness measurements for annular flow in minichannels: description of the optical technique and experimental results[J]. Experimental Thermal and Fluid Science, 2015, 69: 73-85. |
29 | Fu X, Zhang P, Hu H, et al. 3D visualization of two-phase flow in the micro-tube by a simple but effective method[J]. Journal of Micromechanics and Microengineering, 2009, 19(8): 085005. |
30 | Kawahara A, Sadatomi M, Nei K, et al. Experimental study on bubble velocity, void fraction and pressure drop for gas-liquid two-phase flow in a circular microchannel[J]. International Journal of Heat and Fluid Flow, 2009, 30: 831-841. |
31 | 张娜娜, 阎昌琪, 孙立成, 等. 熔盐堆中气泡分离器内部流场的数值模拟[J]. 原子能科学技术, 2014, 48(12): 2208-2212. |
Zhang N N, Yan C Q, Sun L C, et al. Numerical simulation on internal flow field in gas separator of molten salt reactor[J]. Atomic Energy Science and Technology, 2014, 48(12): 2208-2212. |
[1] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[2] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[3] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[4] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[5] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[6] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[7] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[8] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[9] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[10] | 司友明, 郑凌峰, 陈鹏忠, 樊江莉, 彭孝军. 新型锑氧簇光刻胶的性能与机理研究[J]. 化工学报, 2024, 75(4): 1705-1717. |
[11] | 江文钞, 徐兆超. 细胞器超分辨成像荧光染料[J]. 化工学报, 2024, 75(4): 1333-1354. |
[12] | 王书鹏, 杜健军, 姚瑶, 樊江莉, 彭孝军. 线粒体靶向的罗丹明衍生物用于肿瘤荧光成像[J]. 化工学报, 2024, 75(4): 1679-1686. |
[13] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[14] | 李宁, 朱朋飞, 张立峰, 卢栋臣. 基于非凸与不可分离正则化算法的电容层析成像图像重建[J]. 化工学报, 2024, 75(3): 836-846. |
[15] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 349
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 232
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||