化工学报 ›› 2024, Vol. 75 ›› Issue (5): 2081-2090.DOI: 10.11949/0438-1157.20240143
• 过程安全 • 上一篇
李静1(), 张方芳1, 王帅帅1, 徐建华1, 张朋远1,2(
)
收稿日期:
2024-01-30
修回日期:
2024-03-18
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
张朋远
作者简介:
李静(1991—),女,硕士,助教,jltiffany@163.com
基金资助:
Jing LI1(), Fangfang ZHANG1, Shuaishuai WANG1, Jianhua XU1, Pengyuan ZHANG1,2(
)
Received:
2024-01-30
Revised:
2024-03-18
Online:
2024-05-25
Published:
2024-06-25
Contact:
Pengyuan ZHANG
摘要:
部分预混火焰的稳定性对燃烧装置的安全、高效、低排放运行影响重大。以带有凹腔/无凹腔的微型圆柱燃烧器为目标模型,以正丁烷为目标燃料,通过实验和数值模拟相结合的方法,研究了在典型一次空气系数条件下,部分预混火焰在这两种燃烧器中的可燃极限范围。结果表明,第一,凹腔燃烧器的火焰稳定范围要远大于无凹腔燃烧器(相差约2个数量级),特别是对于吹熄极限的影响更为显著,这主要得益于凹腔燃烧器特有的双火焰结构(驻涡火焰+外火焰);第二,凹腔燃烧器在外火焰发生回火或脱火后,凹腔内的驻涡火焰仍可以在一定的范围内继续存在;第三,驻涡火焰对壁面的加热是外火焰稳定的关键。上述结论对部分预混燃烧装置的设计有一定的指导意义。
中图分类号:
李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090.
Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame[J]. CIESC Journal, 2024, 75(5): 2081-2090.
图4 凹腔(a)/无凹腔(b)燃烧器的温度及释热率分布及凹腔(c)/无凹腔(d)在各个速度下的最大释热率
Fig.4 Distributions of temperature and heat release for cavity (a) and non-cavity burners (b), and maximum heat release at different velocity for cavity (c) and non-cavity burners (d)
图6 凹腔燃烧器在外火焰脱火(a)/回火(b)后驻涡火焰的温度及释热率分布及外火焰脱火(c)/回火(d)后驻涡火焰在各个速度下的最大热释率
Fig.6 Distributions of temperature and heat release of trapped vortex flame after blowoff (a)/flashback (b) of external flame for cavity burner, and maximum heat release at different velocity for blowoff (c)/flashback (d) of external flame
1 | 曾海翔, 王平, Prashant Shrotriya, 等. 带有局部熄火现象的部分预混火焰大涡模拟研究[J]. 上海交通大学学报, 2022, 56(1): 35-44. |
Zeng H X, Wang P, Shrotriya P, et al. Large eddy simulation of partially premixed flame with local extinction phenomenon[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 35-44. | |
2 | 张鲁栋. 部分预混火焰中自由基和碳氧比的模拟及实验检测研究[D]. 武汉: 华中科技大学, 2021. |
Zhang L D. Experimental measurement and simulation of radicals and carbon-to-oxygen atom ratio in partially premixed flames[D].Wuhan: Huazhong University of Science and Technology, 2021. | |
3 | 余志健, 杨旸. 部分预混燃烧室热声不稳定及火焰结构实验分析[J]. 航空动力学报, 2022, 37(12): 2851-2864. |
Yu Z J, Yang Y. Investigation of thermo-acoustic instabilities and flame structures in a partially premixed combustor[J]. Journal of Aerospace Power, 2022, 37(12): 2851-2864. | |
4 | Özdemir İ B. Simulation of turbulent combustion in a self-aerated domestic gas oven[J]. Applied Thermal Engineering, 2017, 113: 160-169. |
5 | Yan B, Li B, Baudoin E, et al. Structures and stabilization of low calorific value gas turbulent partially premixed flames in a conical burner[J]. Experimental Thermal and Fluid Science, 2010, 34(3): 412-419. |
6 | Keramiotis C, Founti M A. An experimental investigation of stability and operation of a biogas fueled porous burner[J]. Fuel, 2013, 103: 278-284. |
7 | Aggarwal S K. Extinction of laminar partially premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35(6): 528-570. |
8 | Zhang P Y, Kang Y H, Huang X M, et al. Effects of H2 addition on flammability dynamics and extinction physics of dimethyl ether in laminar spherical diffusion flame[J]. ACS Omega, 2020, 5(34): 21579-21592. |
9 | Zhang P Y, Kang Y H, Huang X M, et al. Study on effect of hydrogen addition on extinction dynamics of dimethyl ether spherical diffusion flame[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11350-11367. |
10 | Guo L, Zhai M, Xu S J, et al. Flame characteristics of methane/air with hydrogen addition in the micro confined combustion space[J]. International Journal of Hydrogen Energy, 2022, 47(44): 19319-19337. |
11 | Kang Y H, Shuang W, Jiang X C, et al. Study on effect of dimethyl ether addition on combustion characteristics of turbulent methane/air jet diffusion flame[J]. Fuel Processing Technology, 2017, 159: 421-435. |
12 | Yang W M, Chou S K, Shu C, et al. Combustion in micro-cylindrical combustors with and without a backward facing step[J]. Applied Thermal Engineering, 2002, 22(16): 1777-1787. |
13 | Tan Y, Jiaqiang E, Chen J W, et al. Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air[J]. Renewable Energy, 2022, 186: 486-504. |
14 | Yan Y F, Yan H Y, Zhang L, et al. Numerical investigation on combustion characteristics of methane/air in a micro-combustor with a regular triangular pyramidbluff body[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7581-7590. |
15 | Fan A W, Wan J L, Liu Y, et al. The effect of the blockage ratio on the blow-off limit of a hydrogen/air flame in a planar micro-combustor with a bluff body[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11438-11445. |
16 | Yang X, Yang W M, Dong S K, et al. Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor[J]. Energy, 2020, 209: 118495. |
17 | Gao W, Yan Y F, Huang L J, et al. Numerical comparison of premixed H2/air combustion characteristic of three types of micro cavity-combustors with guide vanes, bluff body, guide vanes and bluff body respectively[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24382-24394. |
18 | Liu Y, Fan A W, Yao H, et al. Numerical investigation of filtration gas combustion in a mesoscale combustor filled with inert fibrous porous medium[J]. International Journal of Heat and Mass Transfer, 2015, 91: 18-26. |
19 | Liu Y, Fan A W, Yao H, et al. A numerical investigation on the effect of wall thermal conductivity on flame stability and combustion efficiency in a mesoscale channel filled with fibrous porous medium[J]. Applied Thermal Engineering, 2016, 101: 239-246. |
20 | Wan J L, Yang W, Fan A W, et al. A numerical investigation on combustion characteristics of H2/air mixture in a micro-combustor with wall cavities[J]. International Journal of Hydrogen Energy, 2014, 39(15): 8138-8146. |
21 | Su Y, Song J L, Chai J L, et al. Numerical investigation of a novel micro combustor with double-cavity for micro-thermophotovoltaic system[J]. Energy Conversion and Management, 2015, 106: 173-180. |
22 | Kang Y H, Wei S, Zhang P Y, et al. Detailed multi-dimensional study on NO x formation and destruction mechanisms in dimethyl ether/air diffusion flame under the moderate or intense low-oxygen dilution (MILD) condition[J]. Energy, 2017, 119: 1195-1211. |
23 | Kang Y H, Wang Q H, Lu X F, et al. Experimental and numerical study on NO x and CO emission characteristics of dimethyl ether/air jet diffusion flame[J]. Applied Energy, 2015, 149: 204-224. |
24 | Choi M, Park Y, Li X Z, et al. Study on flame structures and emission characteristics according to various swirl combinations and fuel compositions in a CH4/H2/CO syngas swirl-stabilized combustor[J]. Fuel, 2019, 253: 887-903. |
25 | Kuo C H, Ronney P D. Numerical modeling of non-adiabatic heat-recirculating combustors[J]. Proceedings of the Combustion Institute, 2007, 31(2): 3277-3284. |
26 | He Z Q, Yan Y F, Zhao T, et al. Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems[J]. Renewable and Sustainable Energy Reviews, 2022, 165: 112595. |
27 | He Z Q, Yan Y F, Fang R M, et al. Numerical investigation of a novel micro combustor with a central and bilateral slotted blunt body[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23564-23579. |
28 | He Z Q, Zhang L, Li X Q, et al. Heat transfer enhancement and pressure loss analysis of hydrogen-fueled microcombustor with slinky projection shape channel for micro-thermophotovoltaic system[J]. Energy, 2023, 283: 129119. |
29 | Zhang P Y, Kang Y H, Huang X M, et al. Comparative study on the dimethyl ether combustion characteristics in normal and inverse diffusion spherical flame geometries[J]. ACS Omega, 2020, 5(38): 24654-24665. |
30 | 王天天, 张海, 张扬, 等. 掺氢天然气在燃气锅炉和灶具中的回火风险分析[J]. 力学与实践, 2022, 44(3): 543-553. |
Wang T T, Zhang H, Zhang Y, et al. Flashback risk analysis of hydrogen-enriched natural gas in boilers and domestic appliances[J]. Mechanics in Engineering, 2022, 44(3): 543-553. | |
31 | Kim T Y, Kim H K, Ku J W, et al. A heat-recirculating combustor with multiple injectors for thermophotovoltaic power conversion[J]. Applied Energy, 2017, 193: 174-181. |
[1] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[2] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[3] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[4] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[5] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[6] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[7] | 武颖韬, 费立涵, 孔祥东, 王帜, 汤成龙, 黄佐华. 咪唑二氰胺离子液体掺混糠醇的自燃及推进性能[J]. 化工学报, 2024, 75(5): 2017-2025. |
[8] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
[9] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[10] | 张劲, 郭志斌, 罗来明, 卢善富, 相艳. 5 kW重整甲醇高温质子交换膜燃料电池系统设计与性能[J]. 化工学报, 2024, 75(4): 1697-1704. |
[11] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
[12] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[13] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[14] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
[15] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 309
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||