化工学报 ›› 2025, Vol. 76 ›› Issue (5): 2219-2229.DOI: 10.11949/0438-1157.20241117
收稿日期:2024-10-09
修回日期:2024-11-19
出版日期:2025-05-25
发布日期:2025-06-13
通讯作者:
李鑫钢
作者简介:李艳(1990—),女,博士,副教授,YanLi@imut.edu.cn
基金资助:
Yan LI1,2(
), Meili LEI2, Xingang LI1(
)
Received:2024-10-09
Revised:2024-11-19
Online:2025-05-25
Published:2025-06-13
Contact:
Xingang LI
摘要:
顺序式模拟移动床切换模式多变,能耗水耗低,可实现多组分、难分离体系的连续性高效分离纯化。前期研究表明,顺序式模拟移动床无法同时兼顾纯度和溶剂消耗等性能,为此计划通过结构调控与优化,提升分离性能,开发一种具有普适性的新型操作模式。首先选择低聚木糖糖浆作为目标体系,使用DOWEX MONOSPHERETM 99/310 K+ 树脂作为固定相,完成相应的分离实验及过程模拟,以验证模型的准确性。通过过程模拟对顺序式模拟移动床子步骤进行切换顺序调控和切换模式改型,并比较其产品纯度、收率、水耗等指标。结果表明,新型“循环-进料-洗脱”模式表现优异,可在控制水耗的同时保证较高的纯度和收率,且与传统结构“进料-循环-洗脱”相比,相同操作条件下目标产物的纯度和收率分别提升了33%、37%,水耗下降了2.79 ml/min。此外,不同改型方式也可调控分离性能,提高产品多样性,并降低生产成本。本研究为顺序式模拟移动床的工业化应用与改型研究提供了思路与参考。
中图分类号:
李艳, 雷美丽, 李鑫钢. 基于分离性能的顺序式模拟移动床结构调控策略[J]. 化工学报, 2025, 76(5): 2219-2229.
Yan LI, Meili LEI, Xingang LI. Regulation strategy of sequential simulated moving bed structure based on separation performance[J]. CIESC Journal, 2025, 76(5): 2219-2229.
| 试剂 | 纯度/% | 规格 | 生产厂家 |
|---|---|---|---|
| 低聚木糖(XOS) | 95 | — | 山东龙力生物 |
| 阿拉伯糖(ARS) | 95 | — | 山东龙力生物 |
| 木糖(Xylose) | 99 | — | 山东龙力生物 |
| 木二糖(XOS2) | 99.7 | AR | 上海甄准生物 |
| 木三糖(XOS3) | 99.7 | AR | 上海甄准生物 |
| 木四糖(XOS4) | 99.7 | AR | 上海甄准生物 |
| 木五糖(XOS5) | 99.7 | AR | 上海甄准生物 |
| 木六糖(XOS6) | 99.7 | AR | 上海甄准生物 |
| 木七糖(XOS7) | 99.7 | AR | 上海甄准生物 |
表1 实验药品
Table 1 Experimental materials
| 试剂 | 纯度/% | 规格 | 生产厂家 |
|---|---|---|---|
| 低聚木糖(XOS) | 95 | — | 山东龙力生物 |
| 阿拉伯糖(ARS) | 95 | — | 山东龙力生物 |
| 木糖(Xylose) | 99 | — | 山东龙力生物 |
| 木二糖(XOS2) | 99.7 | AR | 上海甄准生物 |
| 木三糖(XOS3) | 99.7 | AR | 上海甄准生物 |
| 木四糖(XOS4) | 99.7 | AR | 上海甄准生物 |
| 木五糖(XOS5) | 99.7 | AR | 上海甄准生物 |
| 木六糖(XOS6) | 99.7 | AR | 上海甄准生物 |
| 木七糖(XOS7) | 99.7 | AR | 上海甄准生物 |
| 仪器 | 规格 | 生产厂家 |
|---|---|---|
| 称量天平 | BSA224S-CW | 德国Sartorius |
| 恒温水浴 | OLB-S6 | 山东欧莱伯仪器 |
| 顺序式模拟移动床 | SEPFOCUS | 上海赛梵科 |
| 高效液相色谱仪 | LC-16A | 日本岛津 |
| 数控超声波清洗器 | TB-5200DT | 天津泰斯特典创仪器 |
| 超级数控恒温槽 | SC-15 | 宁波新芝 |
| 双级反渗透超纯水机 | Master-R | 上海和泰仪器 |
表2 实验仪器
Table 2 Experimental instruments
| 仪器 | 规格 | 生产厂家 |
|---|---|---|
| 称量天平 | BSA224S-CW | 德国Sartorius |
| 恒温水浴 | OLB-S6 | 山东欧莱伯仪器 |
| 顺序式模拟移动床 | SEPFOCUS | 上海赛梵科 |
| 高效液相色谱仪 | LC-16A | 日本岛津 |
| 数控超声波清洗器 | TB-5200DT | 天津泰斯特典创仪器 |
| 超级数控恒温槽 | SC-15 | 宁波新芝 |
| 双级反渗透超纯水机 | Master-R | 上海和泰仪器 |
| 树脂 类型 | 亨利常数H(XOS)/(Pa·kg/mol) | 选择性 α(xylose/XOS) | 柱效N(XOS)/cm | 平均粒度/ μm |
|---|---|---|---|---|
| Ca2+ | 0.384 | 2.01 | 67.2 | 590 |
| K+ | 0.416 | 2.11 | 60.2 | |
| Na+ | 0.284 | 1.69 | 55.8 |
表3 树脂选型结果
Table 3 Resin screening result
| 树脂 类型 | 亨利常数H(XOS)/(Pa·kg/mol) | 选择性 α(xylose/XOS) | 柱效N(XOS)/cm | 平均粒度/ μm |
|---|---|---|---|---|
| Ca2+ | 0.384 | 2.01 | 67.2 | 590 |
| K+ | 0.416 | 2.11 | 60.2 | |
| Na+ | 0.284 | 1.69 | 55.8 |
| 参数 | 数值 |
|---|---|
| 全交换容量/(eq/L) | 1.0 |
| 含水量/% | 55-65 |
| 平均粒径/μm | 590 |
| 均一系数 | 1.1 |
| 圆球率/% | 95 |
| 抗压强度/(g/bead) | 350 |
| 湿真密度/(g/ml) | 1.08 |
| 湿视密度/(g/L) | 657 |
表4 DOWEX MONOSPHERETM 99/310树脂参数
Table 4 Parameters of DOWEX MONOSPHERETM 99/310 resin
| 参数 | 数值 |
|---|---|
| 全交换容量/(eq/L) | 1.0 |
| 含水量/% | 55-65 |
| 平均粒径/μm | 590 |
| 均一系数 | 1.1 |
| 圆球率/% | 95 |
| 抗压强度/(g/bead) | 350 |
| 湿真密度/(g/ml) | 1.08 |
| 湿视密度/(g/L) | 657 |
| 参数 | 数值 |
|---|---|
| 柱数 | 4 |
| 柱参数 | |
| 柱长/cm | 2.5 |
| 柱直径/cm | 100 |
| 孔隙率 | 0.416 |
| 动力学参数 | |
| 最大流速/(ml/min) | 20 |
| TD模型参数/(cm2/min) | 2000 |
| 低聚木糖的传质系数/min-1 | 0.36 |
| 杂质的传质系数/min-1 | 4.54 |
| 亨利常数(T=60℃) | |
| 低聚木糖 | 0.167 |
| 杂质 | 0.45 |
| 进料浓度/(g/L) | |
| 低聚木糖 | 210 |
| 杂质 | 90 |
表5 色谱模型参数
Table 5 Chromatographic model parameters
| 参数 | 数值 |
|---|---|
| 柱数 | 4 |
| 柱参数 | |
| 柱长/cm | 2.5 |
| 柱直径/cm | 100 |
| 孔隙率 | 0.416 |
| 动力学参数 | |
| 最大流速/(ml/min) | 20 |
| TD模型参数/(cm2/min) | 2000 |
| 低聚木糖的传质系数/min-1 | 0.36 |
| 杂质的传质系数/min-1 | 4.54 |
| 亨利常数(T=60℃) | |
| 低聚木糖 | 0.167 |
| 杂质 | 0.45 |
| 进料浓度/(g/L) | |
| 低聚木糖 | 210 |
| 杂质 | 90 |
| 案例 | 纯度/% | 收率/% | 水耗/(ml/min) | 操作条件(4柱SSMB) | |
|---|---|---|---|---|---|
| 1 | 实验 | 83.7 | 85.7 | 9.90 | mⅠ=0.71;mⅡ=0.31;mⅢ=0.38;mⅣ=0.1;Qfeed=14.00 ml/min;t1=5.50 min;t2=10.1 min;t3=4.4 min |
| 模拟 | 88.7 | 86.2 | 9.91 | ||
| 2 | 实验 | 88.9 | 79.8 | 9.85 | mⅠ=0.84;mⅡ=0.36;mⅢ=0.43;mⅣ=0.06;Qfeed=8.34 ml/min;t1=6.99 min;t2=11.05 min;t3=4.34 min |
| 模拟 | 89.8 | 82.5 | 9.89 | ||
| 3 | 实验 | 85.1 | 80.5 | 10.24 | mⅠ=0.92;mⅡ=0.28;mⅢ=0.44;mⅣ=0.08;Qfeed=5.93 ml/min;t1=7.68 min;t2=11.42 min;t3=4.25 min |
| 模拟 | 87.2 | 82.2 | 10.31 | ||
表6 实验数据与模拟结果对比
Table 6 Comparison of experimental data and simulation results
| 案例 | 纯度/% | 收率/% | 水耗/(ml/min) | 操作条件(4柱SSMB) | |
|---|---|---|---|---|---|
| 1 | 实验 | 83.7 | 85.7 | 9.90 | mⅠ=0.71;mⅡ=0.31;mⅢ=0.38;mⅣ=0.1;Qfeed=14.00 ml/min;t1=5.50 min;t2=10.1 min;t3=4.4 min |
| 模拟 | 88.7 | 86.2 | 9.91 | ||
| 2 | 实验 | 88.9 | 79.8 | 9.85 | mⅠ=0.84;mⅡ=0.36;mⅢ=0.43;mⅣ=0.06;Qfeed=8.34 ml/min;t1=6.99 min;t2=11.05 min;t3=4.34 min |
| 模拟 | 89.8 | 82.5 | 9.89 | ||
| 3 | 实验 | 85.1 | 80.5 | 10.24 | mⅠ=0.92;mⅡ=0.28;mⅢ=0.44;mⅣ=0.08;Qfeed=5.93 ml/min;t1=7.68 min;t2=11.42 min;t3=4.25 min |
| 模拟 | 87.2 | 82.2 | 10.31 | ||
| 结构(切换顺序) | PurA | PurB | RecA | RecB | Wc |
|---|---|---|---|---|---|
| 进料-循环-洗脱 | 0.94 | 0.90 | 0.69 | 0.69 | 5.04 |
| 进料-洗脱-循环 | 0.66 | 0.99 | 0.35 | 0.21 | 7.31 |
| 循环-进料-洗脱 | 0.99 | 0.92 | 0.72 | 0.67 | 4.52 |
| 循环-洗脱-进料 | 0.74 | 0.97 | 0.19 | 0.98 | 7.31 |
| 洗脱-循环-进料 | 0.88 | 0.98 | 0.51 | 0.98 | 6.03 |
| 洗脱-进料-循环 | 0.99 | 0.51 | 0.48 | 0.87 | 7.82 |
表7 案例1条件下子步骤切换顺序调控的结果
Table 7 Results of sub-step switching sequence adjustment in case 1
| 结构(切换顺序) | PurA | PurB | RecA | RecB | Wc |
|---|---|---|---|---|---|
| 进料-循环-洗脱 | 0.94 | 0.90 | 0.69 | 0.69 | 5.04 |
| 进料-洗脱-循环 | 0.66 | 0.99 | 0.35 | 0.21 | 7.31 |
| 循环-进料-洗脱 | 0.99 | 0.92 | 0.72 | 0.67 | 4.52 |
| 循环-洗脱-进料 | 0.74 | 0.97 | 0.19 | 0.98 | 7.31 |
| 洗脱-循环-进料 | 0.88 | 0.98 | 0.51 | 0.98 | 6.03 |
| 洗脱-进料-循环 | 0.99 | 0.51 | 0.48 | 0.87 | 7.82 |
| 案例 | 结构 | PurA | PurB | RecA | RecB | Wc |
|---|---|---|---|---|---|---|
| 1 | 循环-进料-洗脱 | 0.99 | 0.92 | 0.72 | 0.67 | 4.52 |
| 洗脱-进料-循环 | 0.99 | 0.51 | 0.48 | 0.87 | 7.81 | |
| 进料-循环-洗脱 | 0.94 | 0.90 | 0.69 | 0.69 | 5.12 | |
| 2 | 循环-进料-洗脱 | 0.95 | 0.88 | 0.82 | 0.84 | 1.71 |
| 洗脱-进料-循环 | 0.89 | 0.41 | 0.28 | 0.99 | 1.72 | |
| 进料-循环-洗脱 | 0.63 | 0.92 | 0.90 | 0.21 | 4.51 | |
| 3 | 循环-进料-洗脱 | 0.90 | 0.94 | 0.79 | 0.88 | 1.53 |
| 洗脱-进料-循环 | 0.42 | 0.99 | 0.17 | 0.01 | 1.52 | |
| 进料-循环-洗脱 | 0.79 | 0.89 | 0.46 | 0.90 | 4.43 |
表8 子步骤切换顺序调控在不同案例下的结果
Table 8 Result of sub-step switching sequence regulation in different cases
| 案例 | 结构 | PurA | PurB | RecA | RecB | Wc |
|---|---|---|---|---|---|---|
| 1 | 循环-进料-洗脱 | 0.99 | 0.92 | 0.72 | 0.67 | 4.52 |
| 洗脱-进料-循环 | 0.99 | 0.51 | 0.48 | 0.87 | 7.81 | |
| 进料-循环-洗脱 | 0.94 | 0.90 | 0.69 | 0.69 | 5.12 | |
| 2 | 循环-进料-洗脱 | 0.95 | 0.88 | 0.82 | 0.84 | 1.71 |
| 洗脱-进料-循环 | 0.89 | 0.41 | 0.28 | 0.99 | 1.72 | |
| 进料-循环-洗脱 | 0.63 | 0.92 | 0.90 | 0.21 | 4.51 | |
| 3 | 循环-进料-洗脱 | 0.90 | 0.94 | 0.79 | 0.88 | 1.53 |
| 洗脱-进料-循环 | 0.42 | 0.99 | 0.17 | 0.01 | 1.52 | |
| 进料-循环-洗脱 | 0.79 | 0.89 | 0.46 | 0.90 | 4.43 |
| 结构 | PurA | PurB | RecA | RecB | Wc |
|---|---|---|---|---|---|
| 进料-循环-洗脱-循环 | 0.80 | 0.99 | 0.74 | 0.21 | 3.82 |
| 循环-进料-洗脱-循环 | 0.97 | 0.53 | 0.25 | 0.78 | 6.32 |
| 进料-循环-进料-洗脱 | 0.90 | 0.82 | 0.23 | 0.37 | 6.02 |
| 洗脱-循环-进料-洗脱 | 0.75 | 0.99 | 0.16 | 0.01 | 6.01 |
| 进料-洗脱-进料-循环 | 0.78 | 0.83 | 0.47 | 0.40 | 7.82 |
| 进料-循环-洗脱-进料 | 0.94 | 0.79 | 0.25 | 0.99 | 6.03 |
表9 案例1条件下的子步骤切换模式调控(增加子步骤)结果
Table 9 Case 1: result of sub-step switching mode control (adding sub-steps)
| 结构 | PurA | PurB | RecA | RecB | Wc |
|---|---|---|---|---|---|
| 进料-循环-洗脱-循环 | 0.80 | 0.99 | 0.74 | 0.21 | 3.82 |
| 循环-进料-洗脱-循环 | 0.97 | 0.53 | 0.25 | 0.78 | 6.32 |
| 进料-循环-进料-洗脱 | 0.90 | 0.82 | 0.23 | 0.37 | 6.02 |
| 洗脱-循环-进料-洗脱 | 0.75 | 0.99 | 0.16 | 0.01 | 6.01 |
| 进料-洗脱-进料-循环 | 0.78 | 0.83 | 0.47 | 0.40 | 7.82 |
| 进料-循环-洗脱-进料 | 0.94 | 0.79 | 0.25 | 0.99 | 6.03 |
| 结构 | PurA | PurB | RecA | RecB | Wc |
|---|---|---|---|---|---|
| 进料-循环 | 0.57 | 0.89 | 0.75 | 0.21 | 2.79 |
| 进料-洗脱 | 0.83 | 0.79 | 0.19 | 0.207 | 9.90 |
| 循环-进料 | 0.89 | 0.43 | 0.17 | 0.99 | 7.30 |
| 洗脱-进料 | 0.79 | 0.43 | 0.17 | 0.99 | 9.89 |
表10 案例1条件下子步骤切换模式调控(减少子步骤)结果
Table 10 Case 1: result of sub-step switching mode control (reducing sub-steps)
| 结构 | PurA | PurB | RecA | RecB | Wc |
|---|---|---|---|---|---|
| 进料-循环 | 0.57 | 0.89 | 0.75 | 0.21 | 2.79 |
| 进料-洗脱 | 0.83 | 0.79 | 0.19 | 0.207 | 9.90 |
| 循环-进料 | 0.89 | 0.43 | 0.17 | 0.99 | 7.30 |
| 洗脱-进料 | 0.79 | 0.43 | 0.17 | 0.99 | 9.89 |
| 1 | Broughton D B. Production-scale adsorptive separations of liquid mixtures by simulated moving-bed technology[J]. Separation Science and Technology, 1984, 19(11/12): 723-736. |
| 2 | Barker P E, Abusabah E K E. The separation of synthetic mixtures of glucose and fructose and also inverted sucrose feedstocks using countercurrent chromatographic techniques[J]. Chromatographia, 1985, 20(1): 9-12. |
| 3 | Nagamatsu S, Murazumi K, Makino S. Chiral separation of a pharmaceutical intermediate by a simulated moving bed process[J]. Journal of Chromatography A, 1999, 832(1/2): 55-65. |
| 4 | Ruthven D M, Ching C B. Counter-current and simulated counter-current adsorption separation processes[J]. Chemical Engineering Science, 1989, 44: 1011-1038. |
| 5 | Deveant R M, Jonas R, Schulte M, et al. Enantiomer separation of a novel Ca-sensitizing drug by simulated moving bed (SMB)-chromatography[J]. Journal Für Praktische Chemie, 1997, 339(1): 315-321. |
| 6 | Francotte E, Richert P, Mazzotti M, et al Simulated moving bed chromatographic resolution of a chiral antitussive[J]. Journal of Chromatography A, 1998, 796(2): 239-248. |
| 7 | Juza M, Mazzotti M, Morbidelli M. Simulated moving-bed chromatography and its application to chirotechnology[J]. Trends in Biotechnology,2000, 18(3):108-118. |
| 8 | 姚传义, 郑震玮, 涂志贤, 等. 模拟移动床色谱分离吴茱萸碱和吴茱萸次碱[J]. 化工学报, 2021, 72(7): 3728-3737. |
| Yao C Y, Zheng Z W, Tu Z X, et al. Separation of evodiamine and rutaecarpine with simulated moving bed chromatography [J]. CIESC Journal, 2021, 72(7): 3728-3737. | |
| 9 | Li Y, Xu J, Yu W F, et al. Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides [J]. Chemical Engineering Science, 2020, 211: 115279. |
| 10 | Tangpromphan P, Budman H, Jaree A. A simplified strategy to reduce the desorbent consumption and equipment installed in a three-zone simulated moving bed process for the separation of glucose and fructose[J]. Chemical Engineering and Processing-Process Intensification, 2018, 126: 23-37. |
| 11 | 凌山, 刘聚明, 张前程, 等. 模拟移动床分离过程及其优化方法研究进展[J]. 化工进展, 2023, 42(5): 2233-2244. |
| Ling S, Liu J M, Zhang Q C, et al. Research progress on simulated moving bed separation process and its optimization methods[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. | |
| 12 | Zhang X T, Liu J M, Ray A K, et al. Research progress on the typical variants of simulated moving bed: from the established processes to the advanced technologies[J]. Processes, 2023, 11(2): 508. |
| 13 | 杨永辉, 刘冰, 陈雪波. 模拟移动床色谱分离技术综述[J]. 化学通报, 2015, 78(2): 132-139. |
| Yang Y H, Liu B, Chen X B. Summary of simulated moving bed chromatography separation technology[J]. Chemistry, 2015, 78(2): 132-139. | |
| 14 | Aniceto J P S, Silva C M. Simulated moving bed strategies and designs: from established systems to the latest developments[J]. Separation & Purification Reviews, 2015, 44(1): 41-73. |
| 15 | Zhang X T, Liu J M, Ray A K, et al. Multi-objective optimization of sequential simulated moving bed for multi-component separation based on multi-parameter modeling and its determination[J]. Chemical Engineering Science, 2024, 295: 120172. |
| 16 | 龚如金, 林小建, 李平, 等. 异步控制Varicol工艺分离愈创木酚甘油醚对映体过程研究[J]. 化工学报, 2015, 66(1): 157-163. |
| Gong R J, Lin X J, Li P, et al. Separation of guaifenesin enantiomers by asynchronous Varicol process[J]. CIESC Journal, 2015, 66(1): 157-163. | |
| 17 | Zhang Z Y, Hidajat K, Ray A K, et al. Multiobjective optimization of SMB and varicol process for chiral separation[J]. AIChE Journal, 2002, 48(12): 2800-2816. |
| 18 | Jermann S, Mazzotti M. Three column intermittent simulated moving bed chromatography (1): Process description and comparative assessment[J]. Journal of Chromatography A, 2014, 1361: 125-138. |
| 19 | Jermann S, Katsuo S, Mazzotti M. Intermittent simulated moving bed processes for chromatographic three-fraction separation[J]. Organic Process Research & Development, 2012, 16(2): 311-322. |
| 20 | Agrawal G, Sreedhar B, Kawajiri Y. Systematic optimization and experimental validation of ternary simulated moving bed chromatography systems[J]. Journal of Chromatography A, 2014, 1356:82-95. |
| 21 | Lee J W, Wankat P C. Design of pseudo-simulated moving bed process with multi-objective optimization for the separation of a ternary mixture: linear isotherms[J]. Journal of Chromatography A, 2010, 1217(20): 3418-3426. |
| 22 | He Q L, von Lieres E, Sun Z X, et al. Model-based process design of a ternary protein separation using multi-step gradient ion-exchange SMB chromatography[J]. Computers & Chemical Engineering, 2020, 138: 106851. |
| 23 | Agrawal G, Kawajiri Y. Comparison of various ternary simulated moving bed separation schemes by multi-objective optimization[J]. Journal of Chromatography A, 2012, 1238: 105-113. |
| 24 | Mun S, Wang N H L. Optimization of productivity in solvent gradient simulated moving bed for paclitaxel purification[J]. Process Biochemistry, 2008, 43(12): 1407-1418. |
| 25 | Kim J K, Abunasser N, Wankat P C, et al. Thermally assisted simulated moving bed systems[J]. Adsorption, 2005, 11(1): 579-584. |
| 26 | Jin W H, Wankat P C. Thermal operation of four-zone simulated moving beds[J]. Industrial & Engineering Chemistry Research, 2007, 46(22): 7208-7220. |
| 27 | Migliorini C, Wendlinger M, Mazzotti M, et al. Temperature gradient operation of a simulated moving bed unit[J]. Industrial & Engineering Chemistry Research, 2001, 40(12): 2606-2617. |
| 28 | Li Y, Ding Z Y, Wang J, et al. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization[J]. Chemical Engineering Science, 2020, 219: 115562. |
| 29 | Choi J, Park H, Park C, et al. Highly efficient recovery of xylobiose from xylooligosaccharides using a simulated moving bed method[J]. Journal of Chromatography A, 2016, 1465: 143-154. |
| 30 | 李良玉, 孙蕊, 李朝阳, 等. 顺序式模拟移动色谱纯化木糖醇母液[J]. 天然产物研究与开发, 2015, 27(10): 1789-1793. |
| Li L Y, Sun R, Li C Y, et al. Purification of xylitol mother liquid using sequential simulated moving bed chromatography[J]. Natural Product Research and Development, 2015, 27(10): 1789-1793. | |
| 31 | 李洪飞, 孙大庆, 李良玉, 等. 基于顺序式模拟移动床色谱法的两种木糖母液分离工艺比较[J]. 食品与机械, 2019, 35(10): 210-213. |
| Li H F, Sun D Q, Li L Y, et al. Comparing of two seperation processes for recovering xylose mother liquor with sequential simulated moving bed technology[J]. Food & Machinery, 2019, 35(10): 210-213. | |
| 32 | Li Y, Yu W F, Ding Z Y, et al. Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process[J]. Separation and Purification Technology, 2019, 215: 360-367. |
| 33 | Martins M, Sganzerla W G, Forster-Carneiro T, et al. Recent advances in xylo-oligosaccharides production and applications: a comprehensive review and bibliometric analysis[J]. Biocatalysis and Agricultural Biotechnology, 2023, 47: 102608. |
| 34 | Mazzotti M. Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm[J]. Journal of Chromatography A, 2006, 1126(1/2): 311-322. |
| 35 | Storti G, Mazzotti M, Morbidelli M, et al. Robust design of binary countercurrent adsorption separation processes[J]. AIChE Journal, 1993, 39(3): 471-492. |
| 36 | Shekhawat L K, Rathore A S. An overview of mechanistic modeling of liquid chromatography[J]. Preparative biochemistry & Biotechnology, 2019, 49(6): 623-638. |
| 37 | Mao S M, Zhang Y, Rohani S, et al. Chromatographic resolution and isotherm determination of (R, S)-mandelic acid on Chiralcel-OD column[J]. Journal of Separation Science, 2012, 35(17): 2273-2281. |
| 38 | Xu J, Zhu L, Xu G Q, et al. Determination of competitive adsorption isotherm of enantiomers on preparative chromatographic columns using inverse method[J]. Journal of Chromatography A, 2013, 1273: 49-56. |
| 39 | Silva R J S, Rodrigues R C R, Mota J P B. Relay simulated moving bed chromatography: concept and design criteria[J]. Journal of Chromatography A, 2012, 1260: 132-142. |
| 40 | 魏朋, 陈珺, 王志国, 等. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800. |
| Wei P, Chen J, Wang Z G, et al. Robust optimization of process parameters of simulated moving bed based on equilibrium theory[J]. CIESC Journal, 2022, 73(2): 792-800. | |
| 41 | 杨明磊,魏民,胡蓉,等.二甲苯模拟移动床分离过程建模与仿真[J].化工学报,2013, 64(12): 4335-4341. |
| Yang M L, Wei M, Hu R, et al. Modeling and simulation of xylene simulated moving bed for xylene separation[J]. CIESC Journal, 2013, 64(12): 4335-4341. | |
| 42 | Pedeferri M, Zenoni G, Mazzotti M, et al. Experimental analysis of a chiral separation through simulated moving bed chromatography[J]. Chemical Engineering Science, 1999, 54(17): 3735-3748. |
| 43 | Kaspereit M, Seidel-Morgenstern A, Kienle A. Design of simulated moving bed processes under reduced purity requirements[J]. Journal of Chromatography A, 2007, 1162(1): 2-13. |
| [1] | 马瑞洁, 黄子轩, 关雪倩, 陈光进, 刘蓓. ZIF-8/DMPU浆液分离C2H6/ CH4混合气研究[J]. 化工学报, 2025, 76(5): 2262-2269. |
| [2] | 高冰冰, 许诺, 白云翔, 张春芳, 杨永强, 董亮亮. 氦气分离聚合物膜[J]. 化工学报, 2025, 76(5): 2119-2135. |
| [3] | 何燎, 李俊, 高梦舒, 刘东阳, 张宇豪, 赵亮, 高金森, 徐春明. 石油烃中芳烃分离技术研究进展[J]. 化工学报, 2025, 76(5): 1909-1926. |
| [4] | 徐泽海, 刘超, 张国亮. 聚合物基疏水渗透汽化膜及其溶剂回收应用[J]. 化工学报, 2025, 76(5): 2055-2069. |
| [5] | 徐智超, 俞镇东, 吴昊峰, 吴沛文, 武洪翔, 巢艳红, 朱文帅, 刘植昌, 徐春明. 富酸位13X分子筛的制备及其超深度吸附脱除生物柴油中硫醇[J]. 化工学报, 2025, 76(5): 2198-2208. |
| [6] | 张耀辉, 班宇杰, 杨维慎. 以蒸气加工法制备和修饰金属-有机框架膜[J]. 化工学报, 2025, 76(5): 2070-2086. |
| [7] | 杨雅南, 常胜然, 薛松林, 潘建明, 邢卫红. 基于光、电驱动促进海水中铀和锂提取的研究进展[J]. 化工学报, 2025, 76(5): 1927-1942. |
| [8] | 杨紫博, 王有发, 岳寒松, 远双杰, 耿付江, 李晴晴, 奥德, 李斌, 叶茂, 顾振杰, 乔志华. MOF玻璃基气体分离膜的研究进展[J]. 化工学报, 2025, 76(5): 2158-2168. |
| [9] | 牛宏斌, 邱丽, 杨景轩, 张忠林, 郝晓刚, 赵忠凯, 阿布里提, 官国清. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
| [10] | 朱迪, 高守建, 方望熹, 靳健. 水蒸气诱导相分离构筑海绵孔结构超亲水聚醚砜膜及其油/水乳液分离性能研究[J]. 化工学报, 2025, 76(5): 2397-2409. |
| [11] | 李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185. |
| [12] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
| [13] | 王金月, 谢恩泽, 马翰泽, 袁晟, 何光伟, 姜忠义. 单原子层分离膜:进展与展望[J]. 化工学报, 2025, 76(5): 1943-1959. |
| [14] | 陆艳秋, 狄扬, 石文博, 殷聪聪, 汪勇. 基于新型有机多孔聚合物的智能响应膜研究进展[J]. 化工学报, 2025, 76(5): 2101-2118. |
| [15] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号