• •
收稿日期:
2024-11-22
修回日期:
2024-12-30
出版日期:
2024-12-31
通讯作者:
郭晓镭
作者简介:
陆昕晟(1999—),男,硕士研究生,xinchengl930@163.com
Xincheng LU(), Xiaolei GUO(
), Shicheng WANG, Haifeng LU, Haifeng LIU
Received:
2024-11-22
Revised:
2024-12-30
Online:
2024-12-31
Contact:
Xiaolei GUO
摘要:
在生物质气流床气化工艺中,在非烘焙状态下实现原始生物质的高效、低能耗细粉制备是提高生物质气化效率的有效途径之一。研究了五种常见秸秆(玉米、芝麻、小麦、棉花和芦苇)在不同水分含量(0.3% ~ 15.3%)和筛网尺寸(1.0 mm、1.5 mm和2.0 mm)下的锤磨粉碎特性。实验结果表明,水分含量、筛网尺寸和秸秆种类对秸秆粉碎的比能耗和产物粒度影响显著。随着水分含量减小,比能耗降低43.4% ~ 61.6%,最高可以减小至36.9 kW·h/t;同时产物粒径参数d90降低了3.9% ~ 22.4%。相同水分下,1mm筛网比能耗比2mm筛网增加39.0% ~ 170.0%。机械力学测试表明,水分降低使得秸秆的抗剪强度减小12.4% ~ 17.1%,杨氏模量增大1.7% ~ 9.0%,从而导致粉碎机制由塑性变形向脆性断裂转变是能耗降低的关键原因。另一方面,填充于纤维素构架中的木质素强化了秸秆的机械力学强度:棉花秸秆和芦苇的木质素含量约为其余三种秸秆的2倍,所以相同水分下棉花秸秆和芦苇粉碎的比能耗总是高于其他三种秸秆。以小于1 mm粒度的单位质量粉体比能耗为基准,发现2.0 mm筛网的有效比能耗相比于1.0 mm筛网Et减小21.1% ~ 55.5%。建立了基于水分含量和粒度的比能耗预测模型,误差为±15%。
中图分类号:
陆昕晟, 郭晓镭, 王世丞, 陆海峰, 刘海峰. 秸秆类生物质的粉碎特性研究[J]. 化工学报, DOI: 10.11949/0438-1157.20241342.
Xincheng LU, Xiaolei GUO, Shicheng WANG, Haifeng LU, Haifeng LIU. Study on comminution characteristics of straw biomass[J]. CIESC Journal, DOI: 10.11949/0438-1157.20241342.
物料 | 纤维素/% | 半纤维素/% | 木质素/% |
---|---|---|---|
A | 50.72 | 25.86 | 11.11 |
B | 45.62 | 20.88 | 12.75 |
C | 40.32 | 33.99 | 11.94 |
D | 43.45 | 18.77 | 23.07 |
E | 50.43 | 21.90 | 22.29 |
表1 秸秆的组成成分(干基)
Table 1 Composition of straws on a dry basis
物料 | 纤维素/% | 半纤维素/% | 木质素/% |
---|---|---|---|
A | 50.72 | 25.86 | 11.11 |
B | 45.62 | 20.88 | 12.75 |
C | 40.32 | 33.99 | 11.94 |
D | 43.45 | 18.77 | 23.07 |
E | 50.43 | 21.90 | 22.29 |
物料 | 水分含量/% |
---|---|
A | 8.14 |
B | 15.11 |
C | 10.67 |
D | 15.33 |
E | 14.32 |
表2 实验物料的初始水分含量
Table 2 Initial moisture content of experimental materials
物料 | 水分含量/% |
---|---|
A | 8.14 |
B | 15.11 |
C | 10.67 |
D | 15.33 |
E | 14.32 |
物料 | d10/mm | d50/mm | d90/mm |
---|---|---|---|
A | 3.31 | 6.45 | 12.53 |
B | 3.61 | 6.97 | 13.85 |
C | 4.63 | 8.28 | 14.82 |
D | 4.80 | 8.75 | 15.39 |
E | 4.85 | 8.83 | 15.95 |
表3 粉碎前的粒径参数
Table 3 Particle size parameters before comminution
物料 | d10/mm | d50/mm | d90/mm |
---|---|---|---|
A | 3.31 | 6.45 | 12.53 |
B | 3.61 | 6.97 | 13.85 |
C | 4.63 | 8.28 | 14.82 |
D | 4.80 | 8.75 | 15.39 |
E | 4.85 | 8.83 | 15.95 |
图9 不同筛网尺寸粉碎后秸秆颗粒的形状参数:(a) 球形度;(b) 长径比
Fig.9 Shape parameters of straw particles after comminution with different screen sizes: (a) Sphericity; (b) Aspect ratio
图11 不同筛网尺寸粉碎后的堆积特性:(a) AOR; (b) 堆积密度ρb
Fig.11 Packing characteristics of straw after comminution with different screen sizes: (a) AOR; (b) bulk density ρb
物料 | a | b | 适用条件 | R2 |
---|---|---|---|---|
A | 1.74 | 6.03 | 农业秸秆 MC < 20% | 0.99 |
B | 1.31 | 5.38 | 0.97 | |
C | 1.29 | 7.50 | 0.99 | |
D | 2.45 | 11.48 | 0.99 | |
E | 2.08 | 16.66 | 0.97 |
表4 拟合参数和相关系数
Table 4 Fitting parameters and correlation coefficients
物料 | a | b | 适用条件 | R2 |
---|---|---|---|---|
A | 1.74 | 6.03 | 农业秸秆 MC < 20% | 0.99 |
B | 1.31 | 5.38 | 0.97 | |
C | 1.29 | 7.50 | 0.99 | |
D | 2.45 | 11.48 | 0.99 | |
E | 2.08 | 16.66 | 0.97 |
1 | Wu S L, Shen D K, Hu J, et al. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 90: 209-217. |
2 | Wu S L, Shen D K, Hu J, et al. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 95: 55-63. |
3 | Pio D T, Tarelho L A C, Pinto P C R. Gasification-based biorefinery integration in the pulp and paper industry: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110210. |
4 | Calado L C, Orzáez M J H, La Cal Herrera J, et al. Techno-economic evaluation of downdraft fixed bed gasification of almond shell and husk as a process step in energy production for decentralized solutions applied in biorefinery systems[J]. Agronomy, 2023, 13(9): 2278 |
5 | Henrich E, Weirich F. Pressurized entrained flow gasifiers for biomass[J]. Environmental Engineering Science, 2004, 21(1): 53-64. |
6 | Kobayashi N, Piao G L, Kobayashi J, et al. A new pulverized biomass utilization technology[J]. Powder Technology, 2008, 180(3): 272-283. |
7 | Basu P. Biomass Gasification, Pyrolysis and Torrefaction[M]. 3rd ed. London: Academic Press, 2018: 263-329. |
8 | Luo S Y, Xiao B, Guo X J, et al. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: influence of particle size on gasification performance[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1260-1264. |
9 | Hernández J J, Aranda-Almansa G, Bula A. Gasification of biomass wastes in an entrained flow gasifier: effect of the particle size and the residence time[J]. Fuel Processing Technology, 2010, 91(6): 681-692. |
10 | Kratky L, Jirout T. Experimental identification and modelling of specific energy requirement for knife milled beech chips in dependence on particle size characteristics and moisture[J]. Energy, 2022, 243: 122749. |
11 | Ngamnikom P, Songsermpong S. The effects of freeze, dry, and wet grinding processes on rice flour properties and their energy consumption[J]. Journal of Food Engineering, 2011, 104(4): 632-638. |
12 | Miao Z, Grift T E, Hansen A C, et al. Energy requirement for comminution of biomass in relation to particle physical properties[J]. Industrial Crops and Products, 2011, 33(2): 504-513. |
13 | Mayer-Laigle C, Rajaonarivony R K, Blanc N, et al. Comminution of dry lignocellulosic biomass: part II. technologies, improvement of milling performances, and security issues[J]. Bioengineering, 2018, 5(3): 50. |
14 | Eisenlauer M, Teipel U. Comminution of wood–influence of process parameters[J]. Chemical Engineering & Technology, 2020, 43(5): 838-847. |
15 | Souček J, Hanzlíková I, Hutla P. A fine desintegration of plants suitable for composite biofuels production[J]. Research in Agricultural Engineering, 2003, 49(1): 7-11. |
16 | Probst K V., Kingsly Ambrose R P., Pinto R L., et al. The effect of moisture content on the grinding performance of corn and corncobs by hammermilling[J]. Transactions of the ASABE, 2013, 56(3): 1025-1033. |
17 | Kadhim J, Aridhee A L, Abood A M, et al. Influence of screen mesh size of hammer mill at different wheat moisture[J]. Plant Archives, 2019, 19: 1138-1141. |
18 | Temmerman M, Jensen P D, Hébert J. Von Rittinger theory adapted to wood chip and pellet milling, in a laboratory scale hammermill[J]. Biomass and Bioenergy, 2013, 56: 70-81. |
19 | Mani S, Tabil L G, Sokhansanj S. Grinding performance and physical properties of selected biomass[C]//2002 Chicago, IL July 28-31, 2002. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2002. |
20 | Vin-Nnajiofor M C, Li W Q, Debolt S, et al. Characterization of the composition, structure, and mechanical properties of endocarp biomass[J]. Journal of the ASABE, 2022, 65(1): 67-74. |
21 | Manouchehrinejad M, van Giesen I, Mani S. Grindability of torrefied wood chips and wood pellets[J]. Fuel Processing Technology, 2018, 182: 45-55. |
22 | Repellin V, Govin A, Rolland M, et al. Energy requirement for fine grinding of torrefied wood[J]. Biomass and Bioenergy, 2010, 34(7): 923-930. |
23 | 丛宏斌, 姚宗路, 赵立欣, 等. 中国农作物秸秆资源分布及其产业体系与利用路径[J]. 农业工程学报, 2019, 35(22): 132-140. |
Cong H B, Yao Z L, Zhao L X, et al. Distribution of crop straw resources and its industrial system and utilization path in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 132-140. | |
24 | 刘俊杰, 严晓斌, 张美怡, 等. 中国农作物秸秆资源产量分布及利用分析[J]. 农业资源与环境学报, 2024, 41(6): 1-13. |
Liu J J, Yan X B, Zhang M Y, et al. Analysis of yield distribution and utilization of crop straw resources I China[J]. Journal of Agricultural Resources and Environment, 2024, 41(6): 1-13. | |
25 | Wu S L, Shen D K, Hu J, et al. Role of β-O-4 glycosidic bond on thermal degradation of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 147-156. |
26 | Wu S L, Shen D K, Hu J, et al. TG-FTIR and Py-GC–MS analysis of a model compound of cellulose–glyceraldehyde[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 79-85. |
27 | Guo Z G, Chen X L, Liu H F, et al. Theoretical and experimental investigation on angle of repose of biomass–coal blends[J]. Fuel, 2014, 116: 131-139. |
28 | Geldart D, Abdullah E C, Hassanpour A, et al. Characterization of powder flowability using measurement of angle of repose[J]. China Particuology, 2006, 4(3–4): 104-107. |
29 | 裴继诚. 植物纤维化学[M]. 4版. 北京: 中国轻工业出版社, 2012: 57-159. |
Pei J C. Lignocellulosic Chemistry[M]. 4th ed. Beijing: China Light Industry Press, 2012: 57-159. | |
30 | Persson S. Mechanics of cutting plant material[J]. Asae Monograph, 1987, 7. |
31 | 周云龙. 植物生物学[M]. 4版. 北京: 高等教育出版社, 2011: 71-88. |
Zhou Y L. Plant Biology[M]. 4th ed. Beijing: Higher Education Press, 2011: 71-88. | |
32 | Guo Q, Chen X L, Liu H F. Experimental research on shape and size distribution of biomass particle[J]. Fuel, 2012, 94: 551-555. |
33 | 付敏. 木质生物质粉碎及规模化制粉机械设计及理论研究[D]. 哈尔滨: 东北林业大学, 2010. |
Fu M. Design and theoretical study of wood biomass crushing and large-scale milling machinery[D]. Harbin: Northeast Forestry University, 2010. |
[1] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
[2] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[3] | 张祎琪, 谭雪松, 李吾环, 张权, 苗长林, 庄新姝. 温和条件下乙二醇苯醚高效分离回收甘蔗渣组分[J]. 化工学报, 2024, 75(6): 2274-2282. |
[4] | 董益斌, 熊敬超, 王敬宇, 汪守康, 王亚飞, 黄群星. 融合激光雷达料位测算的锅炉燃烧优化模型预测控制[J]. 化工学报, 2024, 75(3): 924-935. |
[5] | 冯咪, 张杰, 吕兴梅. 基于胆碱类离子液体的高纯甲壳素一步提取分离[J]. 化工学报, 2024, 75(11): 4286-4297. |
[6] | 刘根, 孙仲顺, 张博, 张榕江, 吴志强, 杨伯伦. 机器学习驱动的生物质热解模型建立及挥发分化学链重整制氢工艺优化[J]. 化工学报, 2024, 75(11): 4333-4347. |
[7] | 刘启顺, 褚德育, 马金晶, 尹恒. 几丁质生物质制备含氮生物基化学品进展及挑战[J]. 化工学报, 2024, 75(11): 4065-4081. |
[8] | 孙琼, 杨富鑫, 谭厚章, 王晓坡. 低共熔溶剂捕集烟气CO2模拟研究[J]. 化工学报, 2024, 75(10): 3705-3717. |
[9] | 于嘉朋, 徐娜, 张玮, 康清源, 张鸿, 秦睦轩, 方嘉宾. 微反应器内气液磺化反应收率和能耗建模及多目标优化[J]. 化工学报, 2024, 75(10): 3681-3690. |
[10] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[11] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[12] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[13] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[14] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[15] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||