化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3905-3914.DOI: 10.11949/0438-1157.20250070
刘璐(
), 杨莹, 杨浩文, 王太, 王腾, 董新宇, 闫润(
)
收稿日期:2025-01-16
修回日期:2025-03-06
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
闫润
作者简介:刘璐(1984—),女,博士,教授,luliu@ncepu.edu.cn
基金资助:
Lu LIU(
), Ying YANG, Haowen YANG, Tai WANG, Teng WANG, Xinyu DONG, Run YAN(
)
Received:2025-01-16
Revised:2025-03-06
Online:2025-08-25
Published:2025-09-17
Contact:
Run YAN
摘要:
蒸汽冷凝以其高效换热效率,在动力发电、航空航天、核工业、空调制冷等领域发挥着重要作用。本研究设计制备星形亲水区组合表面,结合可视化研究阐释了四角、五角、六角星组合表面液滴脱落形态,对比分析了组合表面与纯疏水表面液滴脱落直径、液滴初始脱落时间、液滴脱落频率差异,计算统计了组合表面液滴脱落亲水区剩余凝液面积及其分布特性。结果表明,组合表面促进液滴以较大尺寸快速脱落,加速凝液排出,强化冷凝换热。
中图分类号:
刘璐, 杨莹, 杨浩文, 王太, 王腾, 董新宇, 闫润. 星形亲水区组合表面冷凝液滴脱落特性实验研究[J]. 化工学报, 2025, 76(8): 3905-3914.
Lu LIU, Ying YANG, Haowen YANG, Tai WANG, Teng WANG, Xinyu DONG, Run YAN. Experimental investigations of condensation droplet shedding characteristics on star-shaped hydrophobic-hydrophilic hybrid surfaces[J]. CIESC Journal, 2025, 76(8): 3905-3914.
| 图案类型 | 内切圆半径/mm | 外切圆半径/mm | 亲水区总面积占比/% |
|---|---|---|---|
| 亲水表面 | — | — | 100 |
| 疏水表面 | — | — | 0 |
| 四角星组合表面 | 1.13 | 3.20 | 20 |
| 五角星组合表面 | 1.18 | 3.09 | 20 |
| 六角星组合表面 | 1.20 | 3.00 | 20 |
表1 亲水、疏水及亲疏水组合测试表面尺寸参数
Table 1 Hydrophilic, hydrophobic, hydrophobic-hydrophilic hybrid testing surfaces parameters
| 图案类型 | 内切圆半径/mm | 外切圆半径/mm | 亲水区总面积占比/% |
|---|---|---|---|
| 亲水表面 | — | — | 100 |
| 疏水表面 | — | — | 0 |
| 四角星组合表面 | 1.13 | 3.20 | 20 |
| 五角星组合表面 | 1.18 | 3.09 | 20 |
| 六角星组合表面 | 1.20 | 3.00 | 20 |
图2 亲疏水组合冷凝表面形貌疏水区(a)、亲水区(b)扫描电镜图及接触角测量结果
Fig.2 Scanning electron microscope (SEM) of hydrophobic-hydrophilic hybrid surfaces hydrophobic regions (a), hydrophilic regions (b) and relevant contact angle measurements
图4 四角星(a)、五角星(b)、六角星(c)组合表面疏水区液滴向亲水区液膜迁移动态过程(红色虚线区域)
Fig.4 Visualization of droplet merging from hydrophobic to hydrophilic regions on four-point (a), five-point (b), six-point star (c) hybrid surfaces(red dotted regions)
图6 四角星椭圆轴线竖直(a)、轴线偏离(b),五角星椭圆轴线竖直(c)、轴线偏离(d),六角星椭圆轴线竖直(e)、轴线偏离(f)情况实际标定图
Fig.6 Four-point star ellipse vertical (a) and tilted (b), five-point star ellipse vertical (c) and tilted (d), six-point star ellipse vertical (e) and tilted (f) conditions with real test figure marks
图7 不同冷凝表面液滴最大费雷特直径(a)和最小费雷特直径(b)及三种亲水区设计对比(c)
Fig.7 Condensation droplet maximum (a) and minimum (b) Feret diameter and detailed comparison of three hybrid surfaces(c)
图10 液滴脱落四角星(a)、五角星(b)及六角星(c)亲水区剩余凝液面积测量
Fig.10 Post droplet-shedding residual condensate area measurement on four-star (a), five-star (b) and six-star (c) hydrophilic regions
图11 液滴脱落四角星(a)、五角星(b)、六角星(c)亲水区剩余凝液面积频数分布直方图
Fig.11 Area distribution diagram of post-droplet-shedding residual condensate area on four-star (a), five-star (b) and six-star (c) hydrophilic regions
| [8] | 崔晨乙, 袁甲, 齐宝金, 等. 非均匀润湿表面强化冷凝换热研究[J]. 化学工程, 2020, 48(1): 40-46. |
| Cui C Y, Yuan J, Qi B J, et al. Study on enhanced condensation heat transfer with non-uniform wetting surface[J]. Chemical Engineering (China), 2020, 48(1): 40-46. | |
| [9] | 朱丹丹, 许雄文, 刘金平, 等. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546. |
| Zhu D D, Xu X W, Liu J P, et al. Characteristic of condensation heat transfer of hybrid wettable patterned copper surfaces[J]. CIESC Journal, 2021, 72(5): 2528-2546. | |
| [10] | 刘灯辉, 黄志, 冯妍卉, 等. 超亲水-超疏水组合壁面冷凝性能研究[J]. 工程热物理学报, 2021, 42(2): 475-480. |
| Liu D H, Huang Z, Feng Y H, et al. Vapor condensation on hybrid superhydrophilic/superhydrophobic surfaces[J]. Journal of Engineering Thermophysics, 2021, 42(2): 475-480. | |
| [11] | 张凯, 陆勇俊, 王峰会. 表面能梯度驱动下纳米水滴在不同微结构表面上的运动[J]. 物理学报, 2015, 64(6): 272-277. |
| Zhang K, Lu Y J, Wang F H. Motion of the nanodroplets driven by energy gradient on surfaces with different microstructures[J]. Acta Physica Sinica, 2015, 64(6): 272-277. | |
| [12] | Feng W, Bhushan B. Multistep wettability gradient in bioinspired triangular patterns for water condensation and transport[J]. Journal of Colloid and Interface Science, 2020, 560: 866-873. |
| [13] | Zhuang J Y, Zheng J Y. Directional droplet transport behavior on gradient wettability wedge track with extreme wettability contrast[J]. Chemical Engineering Science, 2024, 283: 119382. |
| [14] | 彭本利, 周勇, 生文龙, 等. 组合表面高不凝气蒸汽冷凝的数值研究[J]. 工程热物理学报, 2023, 44(7): 1973-1981. |
| Peng B L, Zhou Y, Sheng W L, et al. Numerical study on steam condensation with high fraction of non-condensable gas on combined surfaces[J]. Journal of Engineering Thermophysics, 2023, 44(7): 1973-1981. | |
| [15] | 徐泽, 邓梓龙. 组合表面强化冷凝传热研究综述[J]. 建筑热能通风空调, 2022, 41(3): 43-47, 33. |
| Xu Z, Deng Z L. Review on hybrid surfaces for condensation heat transfer enhancement[J]. Building Energy & Environment, 2022, 41(3): 43-47, 33. | |
| [16] | 孔庆盼, 纪献兵, 周儒鸿, 等. 亲-疏水两层结构表面强化蒸汽冷凝传热[J]. 浙江大学学报(工学版), 2020, 54(5): 1022-1028, 1038. |
| Kong Q P, Ji X B, Zhou R H, et al. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(5): 1022-1028, 1038. | |
| [17] | 温荣福, 杜宾港, 杨思艳, 等. 蒸气冷凝传热强化研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12): 1353-1370. |
| Wen R F, Du B G, Yang S Y, et al. Advances in condensation heat transfer enhancement[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12): 1353-1370. | |
| [18] | Ji X B, Zhou D D, Dai C, et al. Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface[J]. International Journal of Heat and Mass Transfer, 2019, 132: 52-67. |
| [19] | Song D, Bhushan B. Enhancement of water collection and transport in bioinspired triangular patterns from combined fog and condensation[J]. Journal of Colloid and Interface Science, 2019, 557: 528-536. |
| [20] | Yi Q J, Tian M C, Yan W J, et al. Visualization study of the influence of non-condensable gas on steam condensation heat transfer[J]. Applied Thermal Engineering, 2016, 106: 13-21. |
| [21] | Varanasi K K, Deng T. Controlling condensation of water using hybrid hydrophobic-hydrophilic surfaces[C]//2010 14th International Heat Transfer Conference. Washington, DC, USA, 2011: 447-452. |
| [22] | Vemuri S, Kim K J, Wood B D, et al. Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan[J]. Applied Thermal Engineering, 2006, 26(4): 421-429. |
| [23] | Foshat S, Jafarpur K, Yaghoubi M. Condensation heat transfer of a hybrid hydrophilic-hydrophobic surface with different arrangements[J]. Chemical Engineering Communications, 2023, 210(4): 490-503. |
| [24] | Wang H, Nguyen Q, Kwon J W, et al. Condensation and wetting behavior on hybrid superhydrophobic and superhydrophilic copper surfaces[J]. Journal of Heat Transfer, 2020, 142(4): 041601. |
| [25] | Zheng S F, Gross U, Wang X D. Dropwise condensation: from fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces[J]. Advances in Colloid and Interface Science, 2021, 295: 102503. |
| [1] | Peng B L, Ma X H, Lan Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 785-794. |
| [2] | Najah M, Calbrix R, Mahendra-Wijaya I P, et al. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms[J]. Chemistry & Biology, 2014, 21(12): 1722-1732. |
| [3] | Chen X M, Wu J, Ma R Y, et al. Nanograssed micropyramidal architectures for continuous dropwise condensation[J]. Advanced Functional Materials, 2011, 21(24): 4617-4623. |
| [4] | Orejon D, Shardt O, Gunda N S K, et al. Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 114: 187-197. |
| [5] | Boreyko J B, Chen C H. Vapor chambers with jumping-drop liquid return from superhydrophobic condensers[J]. International Journal of Heat and Mass Transfer, 2013, 61: 409-418. |
| [6] | Dietz C, Rykaczewski K, Fedorov A G, et al. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation[J]. Applied Physics Letters, 2010, 97(3): 033104. |
| [7] | 刁红梅, 闫向阳, 葛明慧, 等. 流速对含高浓度不凝气的蒸汽冷凝特性的影响[J]. 工程热物理学报, 2024, 45(4): 1150-1155. |
| Diao H M, Yan X Y, Ge M H, et al. Effect of flow velocity on condensation characteristics of vapors containing high concentrations of non-condensable gases[J]. Journal of Engineering Thermophysics, 2024, 45(4): 1150-1155. | |
| [26] | Zhang F, Guo Z G. Bioinspired materials for water-harvesting: focusing on microstructure designs and the improvement of sustainability[J]. Materials Advances, 2020, 1(8): 2592-2613. |
| [27] | Liu W J, Fan P X, Cai M Y, et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection[J]. Nanoscale, 2019, 11(18): 8940-8949. |
| [28] | Alwazzan M, Egab K, Peng B L, et al. Condensation on hybrid-patterned copper tubes (Ⅰ): Characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991-1004. |
| [29] | Chatterjee A, Derby M M, Peles Y, et al. Enhancement of condensation heat transfer with patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2014, 71: 675-681. |
| [30] | Hou K Y, Li X Y, Li Q, et al. Tunable wetting patterns on superhydrophilic/superhydrophobic hybrid surfaces for enhanced dew-harvesting efficacy[J]. Advanced Materials Interfaces, 2020, 7(2): 1901683. |
| [31] | Yang K S, Lin K H, Tu C W, et al. Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1032-1041. |
| [32] | Bai H, Wang L, Ju J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Advanced Materials, 2014, 26(29): 5025-5030. |
| [33] | Bai H Y, Zhao T H, Wang X S, et al. Cactus kirigami for efficient fog harvesting: simplifying a 3D cactus into 2D paper art[J]. Journal of Materials Chemistry A, 2020, 8(27): 13452-13458. |
| [34] | Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38. |
| [35] | Yuan L, Chen X M, Maganty S, et al. Enhancing the oxidation resistance of copper by using sandblasted copper surfaces[J]. Applied Surface Science, 2015, 357: 2160-2168. |
| [36] | Lan Z, Ma X H, Wang S F, et al. Effects of surface free energy and nanostructures on dropwise condensation[J]. Chemical Engineering Journal, 2010, 156(3): 546-552. |
| [37] | Xu B, Chen Z Q. Molecular dynamics study of water vapor condensation on a composite wedge-shaped surface with multi wettability gradients[J]. International Communications in Heat and Mass Transfer, 2019, 105: 65-72. |
| [38] | Liu L Y, Xie Z, Wen L F, et al. Efficient collection and directional transport of condensate on superhydrophilic-hydrophobic surfaces with bioinspired hierarchical wedge-shaped channels[J]. Surfaces and Interfaces, 2024, 55: 105473. |
| [39] | Tang Y, Yang X L, Li Y M, et al. Design of hybrid superwetting surfaces with self-driven droplet transport feature for enhanced condensation[J]. Advanced Materials Interfaces, 2021, 8(13): 2100284. |
| [40] | Mohamed M A, Ahmed S A, Emeara M S, et al. Experimental study for enhancing condensation on large-scale surface using hybrid hydrophilic-hydrophobic patterns[J]. Case Studies in Thermal Engineering, 2023, 45: 102984. |
| [41] | Abràmoff M D, Magalhães P J, Ram S J. Image processing with ImageJ[J]. Biophotonics international, 2004, 11(7): 36-42. |
| [42] | Wu Y L, Zheng J W, Muneeshwaran M, et al. Moist air condensation heat transfer enhancement via superhydrophobicity[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121973. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [3] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [4] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [5] | 于宏鑫, 王宁波, 郭焱华, 邵双全. 动态蓄冰系统的板式换热器流动换热模拟研究[J]. 化工学报, 2025, 76(S1): 106-113. |
| [6] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| [7] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [8] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [9] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [10] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [11] | 张文锋, 郭玮, 张新玉, 曹昊敏, 丁国良. 铝管铝翅片换热器模型开发及软件实现[J]. 化工学报, 2025, 76(S1): 84-92. |
| [12] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [13] | 梁晓江, 陈薇薇, 罗佳南, 费浩天, 叶雪蕾, 李文豪, 聂勇. 电分散管式填充床中荷电气泡的分散特性研究[J]. 化工学报, 2025, 76(8): 3915-3931. |
| [14] | 张淇栋, 艾立强, 马原, 吴胜宝, 王磊, 厉彦忠. 基于一维漂移流模型的低温管路预冷过程两相流动与换热特性研究[J]. 化工学报, 2025, 76(8): 3842-3852. |
| [15] | 龚路远, 果正龙, 赵登辉, 郭亚丽, 周健, 韩倩倩, 沈胜强. 不同疏水性表面冷凝传热性能及动力学特征研究[J]. 化工学报, 2025, 76(8): 3932-3943. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号