化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3915-3931.DOI: 10.11949/0438-1157.20250005

• 流体力学与传递现象 • 上一篇    下一篇

电分散管式填充床中荷电气泡的分散特性研究

梁晓江(), 陈薇薇, 罗佳南, 费浩天, 叶雪蕾, 李文豪, 聂勇()   

  1. 浙江工业大学化学工程学院,浙江工业大学中国石油和化学工业联合会生物柴油技术工程实验室,浙江省生物燃料利用 技术研究重点实验室,浙江 湖州 313200
  • 收稿日期:2025-01-02 修回日期:2025-03-04 出版日期:2025-08-25 发布日期:2025-09-17
  • 通讯作者: 聂勇
  • 作者简介:梁晓江(1988—),男,副教授,lxj0824@zjut.edu.cn
  • 基金资助:
    国家自然科学青年基金项目(22108249);浙江省“万人计划”人才项目(2021R52051)

Dispersion characteristics of charged bubbles in an electric dispersion tubular packed bed

Xiaojiang LIANG(), Weiwei CHEN, Jianan LUO, Haotian FEI, Xuelei YE, Wenhao LI, Yong NIE()   

  1. Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313200, Zhejiang, China
  • Received:2025-01-02 Revised:2025-03-04 Online:2025-08-25 Published:2025-09-17
  • Contact: Yong NIE

摘要:

本文提出一种电场分散技术耦合管式填充床的新型气体分散方法,搭建了电分散器耦合管式填充床实验装置;并采用生物柴油-氮气上升流体系,通过高速摄像仪,开展气泡分散过程可视化研究,探究非均匀电场作用下荷电气泡的分散机制及其气泡群的分散特性。结果表明:在电场力作用下,气泡加速脱离,分散成多个粒径均一的荷电气泡;随着特征电场强度增加,气泡群的索特平均直径从1.80 mm减小到650 μm,呈现窄峰高斯分布。在此基础上,进一步将电分散器耦合管式填充床,考察特征电场强度、孔口气体流速、液体流速及填料类型对流经填充床前后荷电气泡群的二次分散影响规律。结果表明:电分散器的初始分散与填充床的二次分散具有较好的协同作用,填充床出口区的气泡单位体积数量密度基本稳定在(4.0 × 107)~(8.0 × 107)个/m3,气泡群的索特平均直径能够稳定在600~700 μm;此外,电分散管式填充床在不同工况下均具有良好的稳定性与适用性,在不改变气液比的条件下,通过改变特征电场强度可实现对荷电气泡的实时调控。研究结果为电分散耦合填充床技术在气液两相反应器中的应用与拓展提供了参考。

关键词: 气泡, 电分散, 管式填充床, 气液两相流, 调控

Abstract:

A new gas dispersion method of electric field dispersion technology coupled with tubular packed bed was proposed, and an electric disperser coupled tubular packed bed experimental device was built. Using a biodiesel-nitrogen upward flow system and high-speed imaging, the bubble dispersion process was visualized to investigate the dispersion mechanism of charged bubbles and the dispersion characteristics of bubble groups under a non-uniform electric field. The results indicate that under the influence of the electric field force, bubbles accelerate detachment and disperse into multiple uniformly sized charged bubbles. As the characteristic electric field strength increases, the Sauter mean diameter of the bubble group decreases from 1.80 mm to 650 μm, forming a narrow Gaussian distribution. Based on these findings, the electric disperser was further coupled with the tubular packed bed to examine the effects of characteristic electric field strength, gas flow rate at the orifice, liquid flow rate, and packing type on the secondary dispersion of charged bubble groups before and after passing through the packed bed. The results demonstrate that the initial dispersion by the electric disperser and the secondary dispersion within the packed bed exhibit strong synergy. The number of bubbles per unit volume in the packed bed outlet region remains stable between 4.0×107 and 8.0×107, with the Sauter mean diameter of the bubble group stabilizing between 600—700 μm. Moreover, the electric disperser-coupled tubular packed bed exhibits excellent stability and adaptability under various operating conditions. Without altering the gas-liquid ratio, real-time control of charged bubbles can be achieved by adjusting the characteristic electric field strength. These findings provide a reference for the application and development of electric dispersion coupled with packed bed technology in gas-liquid two-phase reactors.

Key words: bubble, electric dispersion, tubular packed bed, gas-liquid two-phase flow, control

中图分类号: