化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2714-2721.DOI: 10.11949/0438-1157.20241522
收稿日期:2024-12-30
修回日期:2025-03-06
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
李芳,李其明
作者简介:梁碧麟(2000—),女,硕士研究生,liangbilinchn@163.com
基金资助:
Bilin LIANG(
), Qian YU, Siqi JIA, Fang LI(
), Qiming LI(
)
Received:2024-12-30
Revised:2025-03-06
Online:2025-06-25
Published:2025-07-09
Contact:
Fang LI, Qiming LI
摘要:
以乙酸镍和
中图分类号:
梁碧麟, 余倩, 贾思琦, 李芳, 李其明. Ni-MOF-74金属有机框架膜的结构调变及气体分离性能研究[J]. 化工学报, 2025, 76(6): 2714-2721.
Bilin LIANG, Qian YU, Siqi JIA, Fang LI, Qiming LI. Structural modulation and gas separation performance of Ni-MOF-74 metal-organic framework membranes[J]. CIESC Journal, 2025, 76(6): 2714-2721.
图3 金属离子与配体的配比对Ni-MOF-74膜微观形貌结构的影响
Fig.3 Effects of the ratio of metal ions to ligands on the evolution of the morphological structure of Ni-MOF-74 membrane
图4 Ni-MOF-74粉末的氮气等温吸附-脱附曲线(插图为孔径分布图)
Fig.4 N2 adsorption-desorption isotherms of Ni-MOF-74 powders (the inserted picture is the pore size distribution diagram)
| Ratio | Gas | Permeance/(10-7 mol·m-2·s-1·Pa-1) | H2 ideal selectivity |
|---|---|---|---|
| 1∶1 | H2 | 80.31 | |
| N2 | 25.23 | 3.18 | |
| CO2 | 21.15 | 3.84 | |
| 2∶1 | H2 | 11.96 | |
| N2 | 5.45 | 2.20 | |
| CO2 | 2.93 | 4.09 | |
| 3∶1 | H2 | 5.43 | |
| N2 | 2.41 | 2.25 | |
| CO2 | 1.25 | 4.34 | |
4∶1 | H2 | 3.73 | |
| N2 | 1.06 | 3.53 | |
| CO2 | 0.18 | 20.63 | |
5∶1 | H2 | 3.97 | |
| N2 | 1.44 | 2.77 | |
| CO2 | 0.67 | 5.93 |
表1 Ni-MOF-74膜的单气体渗透与理想选择性
Table 1 Single gas permeances and their ideal selectivity of the Ni-MOF-74 membranes
| Ratio | Gas | Permeance/(10-7 mol·m-2·s-1·Pa-1) | H2 ideal selectivity |
|---|---|---|---|
| 1∶1 | H2 | 80.31 | |
| N2 | 25.23 | 3.18 | |
| CO2 | 21.15 | 3.84 | |
| 2∶1 | H2 | 11.96 | |
| N2 | 5.45 | 2.20 | |
| CO2 | 2.93 | 4.09 | |
| 3∶1 | H2 | 5.43 | |
| N2 | 2.41 | 2.25 | |
| CO2 | 1.25 | 4.34 | |
4∶1 | H2 | 3.73 | |
| N2 | 1.06 | 3.53 | |
| CO2 | 0.18 | 20.63 | |
5∶1 | H2 | 3.97 | |
| N2 | 1.44 | 2.77 | |
| CO2 | 0.67 | 5.93 |
图7 Ni-MOF-74膜(4∶1)的渗透性能与渗透分子直径的关系(插图为理想选择性和分离因子对比)
Fig.7 Relationship between the permeance and the diameter of permeating molecules for Ni-MOF-74 membrane (4∶1)(the illustration shows the comparison of ideal selectivity and separation factor)
Membrane samples | (10-8 mol·m-2·s-1·Pa-1) | (10-8 mol·m-2·s-1·Pa-1) | Selectivity H2/CO2 | Ref. |
|---|---|---|---|---|
| MOF-74 | 1270 | 140 | 9.1 | [ |
| ZIF-7 | 4.56 | 0.33 | 13.8 | [ |
| ZIF-8 | 2660 | 302.00 | 8.8 | [ |
| NH2-MIL-53 | 538.95 | 60.67 | 8.9 | [ |
| UiO-66-NH2 | 1.42 | 0.19 | 7.4 | [ |
| ZIF-8 | 0.38 | 0.04 | 10.5 | [ |
| CAU-10-H | 19.03 | 10.62 | 1.8 | [ |
| ZIF-90 | 0.82 | 0.12 | 6.6 | [ |
| MIL-96(Al) | 53 | 6.09 | 8.7 | [ |
| ZIF-67 | 148 | 8.81 | 16.8 | [ |
| Ni-MOF-74 | 37.3 | 1.8 | 20.63 | this work |
表2 不同MOF分离膜分离性能对比
Table 2 Comparison of separation performance of different MOF separation membranes
Membrane samples | (10-8 mol·m-2·s-1·Pa-1) | (10-8 mol·m-2·s-1·Pa-1) | Selectivity H2/CO2 | Ref. |
|---|---|---|---|---|
| MOF-74 | 1270 | 140 | 9.1 | [ |
| ZIF-7 | 4.56 | 0.33 | 13.8 | [ |
| ZIF-8 | 2660 | 302.00 | 8.8 | [ |
| NH2-MIL-53 | 538.95 | 60.67 | 8.9 | [ |
| UiO-66-NH2 | 1.42 | 0.19 | 7.4 | [ |
| ZIF-8 | 0.38 | 0.04 | 10.5 | [ |
| CAU-10-H | 19.03 | 10.62 | 1.8 | [ |
| ZIF-90 | 0.82 | 0.12 | 6.6 | [ |
| MIL-96(Al) | 53 | 6.09 | 8.7 | [ |
| ZIF-67 | 148 | 8.81 | 16.8 | [ |
| Ni-MOF-74 | 37.3 | 1.8 | 20.63 | this work |
| [1] | Yuan J P, Liu X Y, Wang H, et al. Evaluation and screening of porous materials containing fluorine for carbon dioxide capture and separation[J]. Computational Materials Science, 2023, 216: 111872. |
| [2] | 乔智威, 杨仁党, 王海辉, 等. 面向生物甲烷分离的不同金属配位金属-有机骨架材料的分子设计[J]. 化工学报, 2014, 65(5): 1729-1735. |
| Qiao Z W, Yang R D, Wang H H, et al. Molecular design of metal-organic frameworks with different metal ligands for bio-methane separation[J]. CIESC Journal, 2014, 65(5): 1729-1735. | |
| [3] | 曲云鹏, 张丙兴, 石金彪, 等. 钛基金属-有机框架材料的改性及其催化性能研究[J]. 化工学报, 2020, 71(1): 283-289. |
| Qu Y P, Zhang B X, Shi J B, et al. Study on modification of titanium-based metal-organic framework and catalytic performance[J]. CIESC Journal, 2020, 71(1): 283-289, 430. | |
| [4] | Sahayaraj A F, Prabu H J, Maniraj J, et al. Metal-organic frameworks (MOFs): the next generation of materials for catalysis, gas storage, and separation[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(7): 1757-1781 |
| [5] | Jia T, Gu Y F, Li F T. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: a review[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108300. |
| [6] | 林叶, 祝钰灵, 李伟华, 等. MOFs材料的CH4存储研究进展[J]. 山东化工, 2021, 50(4): 82-84. |
| Lin Y, Zhu Y L, Li W H, et al. Research progress of CH4 storage in MOF materials[J]. Shandong Chemical Industry, 2021, 50(4): 82-84. | |
| [7] | Xiao H, Low Z X, Gore D B, et al. Porous metal-organic framework-based filters: synthesis methods and applications for environmental remediation[J]. Chemical Engineering Journal, 2022, 430: 133160. |
| [8] | Wang J W, Fan S C, Li H P, et al. De-linker-enabled exceptional volumetric acetylene storage capacity and benchmark C2H2/C2H4 and C2H2/CO2 separations in metal-organic frameworks[J]. Angewandte Chemie International Edition, 2023, 62(10): e202217839. |
| [9] | Du T, Huang L J, Wang J, et al. Luminescent metal-organic frameworks (LMOFs): an emerging sensing platform for food quality and safety control[J]. Trends in Food Science & Technology, 2021, 111: 716-730. |
| [10] | Qian X K, Yadian B L, Wu R B, et al. Structure stability of metal-organic framework MIL-53(Al) in aqueous solutions[J]. International Journal of Hydrogen Energy, 2013, 38(36): 16710-16715. |
| [11] | Zhang L, Wu H B, Madhavi S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J]. Journal of the American Chemical Society, 2012, 134(42): 17388-17391. |
| [12] | Zhuang J L, Kind M, Grytz C M, et al. Insight into the oriented growth of surface-attached metal-organic frameworks: surface functionality, deposition temperature, and first layer order[J]. Journal of the American Chemical Society, 2015, 137(25): 8237-8243. |
| [13] | Bauer C A, Timofeeva T V, Settersten T B, et al. Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks[J]. Journal of the American Chemical Society, 2007, 129(22): 7136-7144. |
| [14] | 张军, 楚超霞, 周虎. 一种新型金属有机骨架化合物[Co3(Hbdc)2(bdc)2]·4DMF·2H2O的合成、表征与晶体结构[J]. 江苏科技大学学报(自然科学版), 2014, 28(4): 342-345. |
| Zhang J, Chu C X, Zhou H. Synthesis, characterization and crystal structure of a new metal-organic framework [Co3(Hbdc)2(bdc)2]·4DMF·2H2O[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2014, 28(4): 342-345. | |
| [15] | Shen J, He X, Ke T, et al. Simultaneous interlayer and intralayer space control in two-dimensional metal-organic frameworks for acetylene/ethylene separation[J]. Nature Communications, 2020, 11(1): 6259. |
| [16] | Gu Y M, Yuan Y Y, Chen C L, et al. Fluorido-bridged robust metal-organic frameworks for efficient C2H2/CO2 separation under moist conditions[J]. Chemical Science, 2023, 14(6): 1472-1478. |
| [17] | Zhu W F, Wang L Z, Liang W J, et al. Bimetallic MOF-74-based mixed matrix membrane for efficient CO2 separation[J]. Microporous and Mesoporous Materials, 2024, 379: 113288. |
| [18] | Wang N Y, Mundstock A, Liu Y, et al. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation[J]. Chemical Engineering Science, 2015, 124: 27-36. |
| [19] | Kazemi A, Ashourzadeh Pordsari M, Tamtaji M, et al. Eco-friendly synthesis and morphology control of MOF-74 for exceptional CO2 capture performance with DFT validation[J]. Separation and Purification Technology, 2025, 361(1): 131328. |
| [20] | Fu M, Liu Y L, Lyu Q, et al. Sustainable vapor-phase deposition and applications of MOF films and membranes: a critical review[J]. Separation and Purification Technology, 2025, 356(part A): 129883. |
| [21] | Zhang Y M, Yin B H, Huang L Z, et al. MOF membranes for gas separations[J]. Progress in Materials Science, 2025, 151: 101432. |
| [22] | Wasik D O, Vicent-Luna J M, Luna-Triguero A, et al. The impact of metal centers in the M-MOF-74 series on carbon dioxide and hydrogen separation[J]. Separation and Purification Technology, 2024, 339: 126539. |
| [23] | Lee D J, Li Q M, Kim H, et al. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique[J]. Microporous and Mesoporous Materials, 2012, 163: 169-177. |
| [24] | Li Y S, Liang F Y, Bux H, et al. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation[J]. Journal of Membrane Science, 2010, 354(1/2): 48-54. |
| [25] | Huang A S, Liu Q, Wang N Y, et al. Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets[J]. Journal of Materials Chemistry A, 2014, 2(22): 8246-8251. |
| [26] | Li W B, Su P C, Zhang G L, et al. Preparation of continuous NH2-MIL-53 membrane on ammoniated polyvinylidene fluoride hollow fiber for efficient H2 purification[J]. Journal of Membrane Science, 2015, 495: 384-391. |
| [27] | Jia M M, Feng Y, Liu S C, et al. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance[J]. Journal of Membrane Science, 2017, 539: 172-177. |
| [28] | Liu Y, Jia H P, Wang N, et al. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks[J]. Angewandte Chemie International Edition, 2015, 54(10): 3028-3032. |
| [29] | Jin H, Wollbrink A, Yao R, et al. A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions[J]. Journal of Membrane Science, 2016, 513: 40-46. |
| [30] | Brown A J, Johnson D J R, Lydon M E, et al. Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers[J]. Angewandte Chemie International Edition, 2012, 51(42): 10615-10618. |
| [31] | Knebel A, Friebe S, Bigall N C, et al. Comparative study of MIL-96(Al) as continuous metal-organic frameworks layer and mixed-matrix membrane[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7536-7544. |
| [32] | Zhou Z M, Wu C, Zhang B Q. ZIF-67 membranes synthesized on α-Al2O3-plate-supported cobalt nanosheets with amine modification for enhanced H2/CO2 permselectivity[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 3182-3188. |
| [1] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [2] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [3] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [4] | 裴星亮, 叶翠平, 裴赢丽, 李文英. 碱改性MIL-53(Cr)选择性吸附分离二甲苯异构体[J]. 化工学报, 2025, 76(S1): 258-267. |
| [5] | 李银龙, 刘国强, 晏刚. 分馏与闪蒸分离耦合自复叠制冷循环性能分析[J]. 化工学报, 2025, 76(S1): 26-35. |
| [6] | 蒋敏, 邵翔宇, 郑立刚, 高建良, 雷刚. 膜片压力对氢-空气混合气体泄爆过程的影响[J]. 化工学报, 2025, 76(6): 2770-2780. |
| [7] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [8] | 孙文浩, 田君, 张锟, 刘娜, 曹宝森, 梁晓嫱. 锂离子电池用高热稳定性新型隔膜的研究新进展[J]. 化工学报, 2025, 76(6): 2524-2543. |
| [9] | 胡家玮, 王聪, 刘美婧. 一种抑制隧道排水管道中结晶体形成的双层阻垢疏水涂层[J]. 化工学报, 2025, 76(6): 3053-3072. |
| [10] | 何昌秋, 田加猛, 陈义齐, 朱宇琛, 刘鑫, 王海, 王贞涛, 王军锋, 周致富, 陈斌. 电场-宏观结构表面协同强化薄液膜沸腾传热特性[J]. 化工学报, 2025, 76(6): 2589-2602. |
| [11] | 刘晗, 崔家馨, 殷梦凡, 郑涛, 张睿, 孟祥海, 刘植昌, 刘海燕, 徐春明. CuAlCl4-二甲苯络合物晶体结构及二元固液相平衡测定[J]. 化工学报, 2025, 76(5): 2241-2250. |
| [12] | 张耀辉, 班宇杰, 杨维慎. 以蒸气加工法制备和修饰金属-有机框架膜[J]. 化工学报, 2025, 76(5): 2070-2086. |
| [13] | 杨雅南, 常胜然, 薛松林, 潘建明, 邢卫红. 基于光、电驱动促进海水中铀和锂提取的研究进展[J]. 化工学报, 2025, 76(5): 1927-1942. |
| [14] | 杨紫博, 王有发, 岳寒松, 远双杰, 耿付江, 李晴晴, 奥德, 李斌, 叶茂, 顾振杰, 乔志华. MOF玻璃基气体分离膜的研究进展[J]. 化工学报, 2025, 76(5): 2158-2168. |
| [15] | 牛宏斌, 邱丽, 杨景轩, 张忠林, 郝晓刚, 赵忠凯, 阿布里提, 官国清. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号