化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3531-3538.DOI: 10.11949/0438-1157.20241417
收稿日期:2024-12-06
修回日期:2025-03-07
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
王军
作者简介:李姿睿(2001—),女,硕士研究生,lizirui@emails.bjut.edu.cn
基金资助:
Zirui LI(
), Kai QI, Jun WANG(
), Guodong XIA
Received:2024-12-06
Revised:2025-03-07
Online:2025-07-25
Published:2025-08-13
Contact:
Jun WANG
摘要:
海水淡化即利用海水脱盐来生产淡水的过程,是实现水资源利用开源增量的一种新技术。通过分子动力学模拟的方法,构建了由亲疏水材料复合而成的Janus纳米通道,在通道两端分别布置高低温热源,液态水在通道亲水段实现蒸发脱盐,水分子在疏水段的温度梯度作用下实现热渗透输运,从而实现海水淡化过程。结果表明,相较于传统疏水通道,Janus纳米通道的产水速率有87.5%的提升,并能保持95%以上的离子去除率,且在脱盐过程中通道内的产水速率与温差、通道宽度、系统温度及两端壁面亲疏水差异呈正相关关系,而亲疏水壁面的占比则存在一个最佳值。所提出的关于Janus纳米通道脱盐过程的分子动力学模拟可以为未来基于低品位余热利用的膜法海水淡化过程提供理论指导。
中图分类号:
李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538.
Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel[J]. CIESC Journal, 2025, 76(7): 3531-3538.
| 离子/原子 | σ/nm | ε/eV | q/e |
|---|---|---|---|
| Na+ | 0.333 | 0.0153 | 1.0 |
| K+ | 0.349 | 0.0137 | 1.0 |
| Cl- | 0.442 | 0.0051 | -1.0 |
| H | 0 | 0 | 0.4238 |
| O | 0.354 | 0.009 | -0.8476 |
| Ag | 0.264 | 0.345 | — |
表1 L-J势函数的具体参数
Table 1 Parameters of L-J potential
| 离子/原子 | σ/nm | ε/eV | q/e |
|---|---|---|---|
| Na+ | 0.333 | 0.0153 | 1.0 |
| K+ | 0.349 | 0.0137 | 1.0 |
| Cl- | 0.442 | 0.0051 | -1.0 |
| H | 0 | 0 | 0.4238 |
| O | 0.354 | 0.009 | -0.8476 |
| Ag | 0.264 | 0.345 | — |
| 类型 | kH | kL |
|---|---|---|
| Ⅰ | 0.5 | 0.5 |
| Ⅱ | 0.6 | 0.4 |
| Ⅲ | 0.7 | 0.3 |
| Ⅳ | 0.8 | 0.2 |
| Ⅴ | 0.9 | 0.1 |
表2 Janus纳米通道的耦合参数
Table 2 Parameters of coupling strength parameter for varying types of Janus nanochannels
| 类型 | kH | kL |
|---|---|---|
| Ⅰ | 0.5 | 0.5 |
| Ⅱ | 0.6 | 0.4 |
| Ⅲ | 0.7 | 0.3 |
| Ⅳ | 0.8 | 0.2 |
| Ⅴ | 0.9 | 0.1 |
| [1] | Tong T Z, Elimelech M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. |
| [2] | 杨锦蕊, 郑宏飞, 马兴龙, 等. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
| Yang J R, Zheng H F, Ma X L, et al. Study on two-stage stacked humidification-dehumidification desalination device[J]. CIESC Journal, 2024, 75(7): 2446-2454. | |
| [3] | 顾浩, 张福建, 刘珍, 等. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
| Gu H, Zhang F J, Liu Z, et al. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling[J]. CIESC Journal, 2023, 74(5): 2067-2074. | |
| [4] | Amy G, Ghaffour N, Li Z Y, et al. Membrane-based seawater desalination: present and future prospects[J]. Desalination, 2017, 401: 16-21. |
| [5] | Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review[J]. Desalination, 2012, 287: 2-18. |
| [6] | Chen W Q, Sedighi M, Jivkov A P. Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect[J]. Nanoscale, 2021, 13(3): 1696-1716. |
| [7] | Fu L, Merabia S, Joly L. What controls thermo-osmosis? Molecular simulations show the critical role of interfacial hydrodynamics[J]. Physical Review Letters, 2017, 119(21): 214501. |
| [8] | Darhuber A A, Valentino J P, Davis J M, et al. Microfluidic actuation by modulation of surface stresses[J]. Applied Physics Letters, 2003, 82(4): 657-659. |
| [9] | Keulen L, van der Ham L V, Kuipers N J M, et al. Membrane distillation against a pressure difference[J]. Journal of Membrane Science, 2017, 524: 151-162. |
| [10] | Feng S L, Zhu P G, Zheng H X, et al. Three-dimensional capillary ratchet-induced liquid directional steering[J]. Science, 2021, 373(6561): 1344-1348. |
| [11] | Morgenthaler S. Surface-chemical gradients[D]. Zurich: ETH Zurich, 2007. |
| [12] | Anzini P, Filiberti Z, Parola A. Fluid flow at interfaces driven by thermal gradients[J]. Physical Review E, 2022, 106(2): 024116. |
| [13] | Anzini P, Colombo G M, Filiberti Z, et al. Thermal forces from a microscopic perspective[J]. Physical Review Letters, 2019, 123(2): 028002. |
| [14] | Lippmann G. Endosmose entre deux liquides de nême composition chimique et de températures différentes[J]. Comptes Rendus, 1907, 145: 104-105. |
| [15] | Barragán V M, Kjelstrup S. Thermo-osmosis in membrane systems: a review[J]. Journal of Non-Equilibrium Thermodynamics, 2017, 42(3): 217-236. |
| [16] | Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3): 1073-1095. |
| [17] | Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications[J]. Chemical Society Reviews, 2019, 48(11): 3102-3144. |
| [18] | Derjaguin B V, Sidorenkov G P. Thermal osmosis at ordinary temperatures[J]. Dokl. Akad. Nauk SSSR, 1941, 32: 622-628. |
| [19] | Bregulla A P, Würger A, Günther K, et al. Thermo-osmotic flow in thin films[J]. Physical Review Letters, 2016, 116(18): 188303. |
| [20] | Marbach S, Yoshida H, Bocquet L. Osmotic and diffusio-osmotic flow generation at high solute concentration (Ⅰ): Mechanical approaches[J]. The Journal of Chemical Physics, 2017, 146(19): 194701. |
| [21] | Qi K, Li Z R, Wang J, et al. Direction reverse of the thermo-osmosis for a liquid in a nanochannel[J]. Physics of Fluids, 2024, 36(11): 112028. |
| [22] | Derjaguin B V, Churaev N V, Muller V M. Surface Forces[M]. Boston, MA: Springer US, 1987. |
| [23] | 齐凯, 朱星光, 王军, 等. 外电场作用下纳米结构表面的固-液界面传热特性[J]. 物理学报, 2024, 73(15): 124-131. |
| Qi K, Zhu X G, Wang J, et al. Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field[J]. Acta Physica Sinica, 2024, 73(15): 124-131. | |
| [24] | Cho I, Lee K W. Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene[J]. Journal of Applied Polymer Science, 1985, 30(5): 1903-1926. |
| [25] | Walther A, Müller A H E. Janus particles: synthesis, self-assembly, physical properties, and applications[J]. Chemical Reviews, 2013, 113(7): 5194-5261. |
| [26] | Yan J, Chaudhary K, Chul Bae S, et al. Colloidal ribbons and rings from Janus magnetic rods[J]. Nature Communications, 2013, 4: 1516. |
| [27] | Pang D X, Wan C S, Wang M Y, et al. Streng zweiphasige Weiche und Hharte Janus-strukturen-synthese, eigenschaften und anwendungen[J]. Angewandte Chemie, 2014, 126(22): 5630-5644. |
| [28] | Wang Z J, Wang Y, Liu G J. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric[J]. Angewandte Chemie International Edition, 2016, 55(4): 1291-1294. |
| [29] | Zhang Z, Kong X Y, Xiao K, et al. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating[J]. Advanced Materials, 2016, 28(1): 144-150. |
| [30] | Hou J W, Ji C, Dong G X, et al. Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase[J]. Journal of Materials Chemistry A, 2015, 3(33): 17032-17041. |
| [31] | 王军, 李海洋, 夏国栋. 固液界面热阻的温度依赖特性模拟研究[J]. 北京工业大学学报, 2024, 50(7): 864-871. |
| Wang J, Li H Y, Xia G D. Numerical study of the effects of system temperature on heat transfer at the solid-liquid interface[J]. Journal of Beijing University of Technology, 2024, 50(7): 864-871. | |
| [32] | 王军, 张悦, 夏国栋. 纳米凹槽表面结冰的分子动力学模拟研究[J]. 河南师范大学学报(自然科学版), 2024, 52(1): 93-99, 181. |
| Wang J, Zhang Y, Xia G D. Molecular dynamics simulation of icing on the of nano-grooved surfaces[J]. Journal of Henan Normal University (Natural Science Edition), 2024, 52(1): 93-99, 181. | |
| [33] | 毕丽森, 刘斌, 胡恒祥, 等. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
| Bi L S, Liu B, Hu H X, et al. Molecular dynamics study on evaporation mode of nano-droplets on rough interface[J]. CIESC Journal, 2023, 74(S1): 172-178. | |
| [34] | Denbigh K G. Thermo-osmosis of gases through a membrane[J]. Nature, 1949, 163: 60. |
| [35] | Li S, Zhang X K, Su J Y. Surface modification promotes the desalination performance in asymmetric graphene channels[J]. Journal of Molecular Liquids, 2023, 386: 122448. |
| [36] | Li S, Zhang X K, Su J Y. Desalination performance in Janus graphene oxide channels: geometric asymmetry vs charge polarity[J]. ACS Applied Materials & Interfaces, 2024, 16(2): 2659-2671. |
| [37] | Hu H W, Wang J, Zhao Q, et al. Interfacial evaporation and salt-blocking kinetics in Janus membrane for solar desalination[J]. Desalination, 2024, 592: 118129. |
| [38] | Rauter M T, Schnell S K, Hafskjold B, et al. Thermo-osmotic pressure and resistance to mass transport in a vapor-gap membrane[J]. Physical Chemistry Chemical Physics, 2021, 23(23): 12988-13000. |
| [1] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [2] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [3] | 孙国庆, 李海波, 丁志阳, 郭文辉, 徐浩, 赵艳侠. 硅基负极材料的研究进展[J]. 化工学报, 2025, 76(7): 3197-3211. |
| [4] | 高凤凤, 程慧峰, 杨博, 郝晓刚. 电驱动NiFeMn LDH/CNTs/PVDF膜电极选择性提取钨酸根离子[J]. 化工学报, 2025, 76(7): 3350-3360. |
| [5] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [6] | 丁宏鑫, 干文翔, 赵雍洋, 贾润泽, 康子祺, 赵玉隆, 向勇. X65钢焊接接头在超临界CO2相及富H2O相中的腐蚀机理研究[J]. 化工学报, 2025, 76(7): 3426-3435. |
| [7] | 乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695. |
| [8] | 梁碧麟, 余倩, 贾思琦, 李芳, 李其明. Ni-MOF-74金属有机框架膜的结构调变及气体分离性能研究[J]. 化工学报, 2025, 76(6): 2714-2721. |
| [9] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [10] | 蒋敏, 邵翔宇, 郑立刚, 高建良, 雷刚. 膜片压力对氢-空气混合气体泄爆过程的影响[J]. 化工学报, 2025, 76(6): 2770-2780. |
| [11] | 孙文浩, 田君, 张锟, 刘娜, 曹宝森, 梁晓嫱. 锂离子电池用高热稳定性新型隔膜的研究新进展[J]. 化工学报, 2025, 76(6): 2524-2543. |
| [12] | 何昌秋, 田加猛, 陈义齐, 朱宇琛, 刘鑫, 王海, 王贞涛, 王军锋, 周致富, 陈斌. 电场-宏观结构表面协同强化薄液膜沸腾传热特性[J]. 化工学报, 2025, 76(6): 2589-2602. |
| [13] | 彭健, 沈鲁恺, 王立坤, 忻利宏, 刘涌, 赵高凌, 马赛男, 韩高荣. 钨酸盐纳米材料的制备及其在电致变色领域的研究进展[J]. 化工学报, 2025, 76(6): 2451-2468. |
| [14] | 李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357. |
| [15] | 花敬贤, 罗宇荣, 顾亚伟, 吴婷婷, 潘宜昌, 邢卫红. 超薄取向ZIF-8膜的制备及乙烯/乙烷高效分离[J]. 化工学报, 2025, 76(5): 2209-2218. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号