化工学报 ›› 2022, Vol. 73 ›› Issue (2): 782-791.DOI: 10.11949/0438-1157.20210791
收稿日期:
2021-06-10
修回日期:
2021-09-03
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
栾小丽
作者简介:
邬云飞(1998—),男,硕士研究生,基金资助:
Yunfei WU(),Xiaoli LUAN(
),Fei LIU
Received:
2021-06-10
Revised:
2021-09-03
Online:
2022-02-05
Published:
2022-02-18
Contact:
Xiaoli LUAN
摘要:
使用近红外光谱分析技术,对2,6-二甲酚(2,6-DMP)单体分离工段精馏提纯过程的产品纯度进行在线检测。由于2,6-DMP产品塔的产品纯度较高(通常为99.10%~99.95%),样本的纯度值集中分布在一个较小的范围,样本数据之间的变异系数小,样本之间的区分度低,导致所采集光谱与产品纯度之间缺乏相关性,因而无法建立可靠的近红外模型。为了准确检测2,6-DMP产品塔的产品纯度,从而对产品质量进行实时调控,引入迁移学习算法,充分利用2,6-DMP精馏提纯过程中不同塔之间近红外光谱数据的相似性,借助于其他塔中较低2,6-DMP纯度的近红外光谱数据,改善产品塔中较高2,6-DMP纯度的近红外模型性能。通过对某合成材料公司2,6-DMP精馏提纯过程的产品纯度建立近红外在线检测模型,验证了所提方法的有效性。分析结果表明,借助于不同样本数量以及纯度范围的近红外光谱数据,所建模型精度有所不同,说明迁移学习算法不仅可以有效解决样本区分度低情形下的建模问题,且建模精度与所借助光谱的样本数量以及纯度范围密切相关。
中图分类号:
邬云飞, 栾小丽, 刘飞. 基于迁移学习的2,6-二甲酚纯度近红外光谱在线检测[J]. 化工学报, 2022, 73(2): 782-791.
Yunfei WU, Xiaoli LUAN, Fei LIU. Near-infrared spectroscopy online detecting for 2,6-dimethylphenol purity based on transfer learning[J]. CIESC Journal, 2022, 73(2): 782-791.
样本集 | 样本数 | 均值/% | 标准差/% | 变异 系数/% | 最小值/% | 最大值/% |
---|---|---|---|---|---|---|
脱苯酚塔检测点 | 330 | 81.6859 | 2.1343 | 2.6128 | 73.90 | 88.94 |
邻甲酚粗品塔检测点 | 300 | 97.4890 | 0.3621 | 0.3714 | 96.47 | 98.49 |
2,6-DMP产品塔检测点 | 50 | 99.8570 | 0.0310 | 0.0310 | 99.81 | 99.95 |
表1 不同检测点的2,6-DMP纯度值分布
Table 1 2,6-DMP purity distribution at different detecting points
样本集 | 样本数 | 均值/% | 标准差/% | 变异 系数/% | 最小值/% | 最大值/% |
---|---|---|---|---|---|---|
脱苯酚塔检测点 | 330 | 81.6859 | 2.1343 | 2.6128 | 73.90 | 88.94 |
邻甲酚粗品塔检测点 | 300 | 97.4890 | 0.3621 | 0.3714 | 96.47 | 98.49 |
2,6-DMP产品塔检测点 | 50 | 99.8570 | 0.0310 | 0.0310 | 99.81 | 99.95 |
脱苯酚塔检测点/% | 邻甲酚粗品塔检测点/% |
---|---|
<79.50 | <97.10 |
79.50~80.00 | 97.10~97.20 |
80.00~80.50 | 97.20~97.30 |
80.50~81.00 | 97.30~97.40 |
81.00~81.50 | 97.40~97.50 |
81.50~82.00 | 97.50~97.60 |
82.00~82.50 | 97.60~97.70 |
82.50~83.00 | 97.70~97.80 |
83.00~83.50 | 97.80~97.90 |
83.50~84.00 | >97.90 |
>84.00 |
表2 不同检测点的2,6-DMP纯度区间划分
Table 2 Domain partition of 2,6-DMP purity at different detecting points
脱苯酚塔检测点/% | 邻甲酚粗品塔检测点/% |
---|---|
<79.50 | <97.10 |
79.50~80.00 | 97.10~97.20 |
80.00~80.50 | 97.20~97.30 |
80.50~81.00 | 97.30~97.40 |
81.00~81.50 | 97.40~97.50 |
81.50~82.00 | 97.50~97.60 |
82.00~82.50 | 97.60~97.70 |
82.50~83.00 | 97.70~97.80 |
83.00~83.50 | 97.80~97.90 |
83.50~84.00 | >97.90 |
>84.00 |
1 | Hay A S. Poly(phenylene oxides)s and poly(arylene ether)s derived from 2, 6-diarylphenols[J]. Progress in Polymer Science, 1999, 24(1): 45-80. |
2 | Kemeleva E A, Vasyunina E A, Sinitsina O I, et al. New promising antioxidants based on 2, 6-dimethylphenol[J]. Russian Journal of Bioorganic Chemistry, 2008, 34(4): 499-509. |
3 | Prince C, Jia Z. Measurement of detergent concentration using 2,6-dimethylphenol in membrane-protein crystallization[J]. Acta Crystallographica Section D: Biological Crystallography, 2012, 68(12): 1694-1696. |
4 | 陈藕君, 黄国楺. 2,6-二甲基苯酚的填充柱气相色谱分析[J]. 化学世界, 1988, 29(7): 320-322. |
Chen O J, Huang G R. Measurement of 2,6-dimethyl phenol by packed column gas chromatography[J]. Chemical World, 1988, 29(7): 320-322. | |
5 | Richard R, Li Y, Dubreuil B, et al. On-line monitoring of the transesterification reaction between triglycerides and ethanol using near infrared spectroscopy combined with gas chromatography[J]. Bioresource Technology, 2011, 102(12): 6702-6709. |
6 | Sales R F, Vitale R, de Lima S M, et al. Multivariate statistical process control charts for batch monitoring of transesterification reactions for biodiesel production based on near-infrared spectroscopy[J]. Computers & Chemical Engineering, 2016, 94: 343-353. |
7 | Silva W K, Chicoma D L, Giudici R. In-situ real-time monitoring of particle size, polymer, and monomer contents in emulsion polymerization of methyl methacrylate by near infrared spectroscopy[J]. Polymer Engineering & Science, 2011, 51(10): 2024-2034. |
8 | Torraga M G, Giudici R. Stabilizer-free dispersion copolymerization monitoring by in-line NIR spectroscopy[J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15497-15505. |
9 | Pasquini C. Near infrared spectroscopy: a mature analytical technique with new perspectives—a review[J]. Analytica Chimica Acta, 2018, 1026: 8-36. |
10 | Żukowski W, Berkowicz G, Baron J, et al. Selective phenol methylation to 2, 6-dimethylphenol in a fluidized bed of iron-chromium mixed oxide catalyst with o-cresol circulation[J]. Chemistry Central Journal, 2014, 8(1): 51. |
11 | 刘培义, 任玉林, 苟玉慧, 等. 人工神经网络-近红外光谱法用于甲氧苄胺嘧啶粉末药品的非破坏定量分析[J]. 高等学校化学学报, 2000, 21(4): 544-546. |
Liu P Y, Ren Y L, Gou Y H, et al. Nondestructive quantitative analysis of trimethoprim powder pharmaceutical by artificial neural network and near-infrared spectroscopy[J]. Chemical Journal of Chinese Universities, 2000, 21(4): 544-546. | |
12 | 瞿海斌, 刘晓宣, 程翼宇. 中药材三七提取液近红外光谱的支持向量机回归校正方法[J]. 高等学校化学学报, 2004, 25(1): 39-43. |
Qu H B, Liu X X, Cheng Y Y. A method for analysis of extracting solution of Panax notoginseng using near-infrared spectroscopy and support vector regression[J]. Chemical Journal of Chinese Universities, 2004, 25(1): 39-43. | |
13 | 冯爱明, 方利民, 林敏. 近红外光谱分析中的高斯过程回归方法[J]. 光谱学与光谱分析, 2011, 31(6): 1514-1517. |
Feng A M, Fang L M, Lin M. Gaussian process regression and its application in near-infrared spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1514-1517. | |
14 | Chakraborty S. Bayesian multiple response kernel regression model for high dimensional data and its practical applications in near infrared spectroscopy[J]. Computational Statistics & Data Analysis, 2012, 56(9): 2742-2755. |
15 | Bian X H, Li S J, Fan M R, et al. Spectral quantitative analysis of complex samples based on the extreme learning machine[J]. Analytical Methods, 2016, 8(23): 4674-4679. |
16 | Wang K Y, Bian X H, Tan X Y, et al. A new ensemble modeling method for multivariate calibration of near infrared spectra[J]. Analytical Methods, 2021, 13(11): 1374-1380. |
17 | Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. |
18 | 周书恒, 杜文莉. 基于迁移学习的裂解炉产率建模[J]. 化工学报, 2014, 65(12): 4921-4928. |
Zhou S H, Du W L. Modeling of ethylene cracking furnace yields based on transfer learning[J]. CIESC Journal, 2014, 65(12): 4921-4928. | |
19 | 刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988. |
Liu J, Shao C, Zhu L. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988. | |
20 | Qureshi A S, Khan A, Zameer A, et al. Wind power prediction using deep neural network based meta regression and transfer learning[J]. Applied Soft Computing, 2017, 58: 742-755. |
21 | Wang Y F, Wang K, Zhou Z, et al. Modeling of oil near-infrared spectroscopy based on similarity and transfer learning algorithm[J]. Frontiers of Chemical Science and Engineering, 2019, 13(3): 599-607. |
22 | Wen L, Gao L, Li X Y. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136-144. |
23 | 张振良, 刘君强, 黄亮, 等. 基于半监督迁移学习的轴承故障诊断方法[J]. 北京航空航天大学学报, 2019, 45(11): 2291-2300. |
Zhang Z L, Liu J Q, Huang L, et al. A bearing fault diagnosis method based on semi-supervised and transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2291-2300. | |
24 | 毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J]. 自动化学报, 2022, 48(1): 302-314. |
Mao W T, Tian S Y, Dou Z, et al. A new deep transfer learning-based online detection method of rolling bearing early fault[J]. Acta Automatica Sinica, 2022, 48(1): 302-314. | |
25 | Wu H, Zhao J S. Fault detection and diagnosis based on transfer learning for multimode chemical processes[J]. Computers & Chemical Engineering, 2020, 135: 106731. |
26 | Dai W Y, Yang Q, Xue G R, et al. Boosting for transfer learning[C]// Proceedings of the 24th International Conference on Machine Learning - ICML '07. New York: ACM Press, 2007, 227: 193. |
27 | Bian X H, Wang K Y, Tan E X, et al. A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 197: 103916. |
28 | Pardoe D, Stone P. Boosting for regression transfer[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010: 863-870. |
29 | Al-Stouhi S, Reddy C K. Adaptive boosting for transfer learning using dynamic updates[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer, 2011: 60-75. |
30 | Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109-130. |
[1] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[2] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[3] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[4] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[5] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[6] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[7] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[8] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[9] | 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215. |
[10] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[11] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[12] | 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641. |
[13] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[14] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[15] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||