化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6196-6217.DOI: 10.11949/0438-1157.20250331

• 综述与专论 • 上一篇    下一篇

锂硫电池电解液研究进展:分子设计与应用

王梦涵1,2,3,4(), 于淼1,2,3,4, 吴桐1,2,3,4()   

  1. 1.内蒙古民族大学化学与材料学院,内蒙古 通辽 028000
    2.内蒙古民族大学纳米创新研究院,内蒙古 通辽 028000
    3.内蒙古自治区纳米碳材料重点实验室,内蒙古 通辽 028000
    4.锂硫电池储能内蒙古自治区工程研究中心,内蒙古 通辽 028000
  • 收稿日期:2025-04-01 修回日期:2025-05-22 出版日期:2025-12-31 发布日期:2026-01-23
  • 通讯作者: 吴桐
  • 作者简介:王梦涵(2001—),女,硕士研究生,1146532814@qq.com
  • 基金资助:
    2020年度自治区本级事业单位引进人才科研启动绩效项目(RCQD20002);2021年科研启动金(BS416);三氟甲基苯类分子可控调制氟化SEI与增强锂硫电池机制研究(22461030);含氟电解液添加剂实现快充RinNM膜锂硫电池(GXKY25Z039)

Research progress of electrolyte for lithium-sulfur batteries: molecular design and application

Menghan WANG1,2,3,4(), Miao YU1,2,3,4, Tong WU1,2,3,4()   

  1. 1.School of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China
    2.Nanoinnovation Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China
    3.Key Laboratory of Nanocarbon Materials in Inner Mongolia Autonomous Region, Tongliao 028000, Inner Mongolia, China
    4.Lithium sulfur battery energy storage Inner Mongolia Autonomous Region Engineering Research Center, Tongliao 028000, Inner Mongolia, China
  • Received:2025-04-01 Revised:2025-05-22 Online:2025-12-31 Published:2026-01-23
  • Contact: Tong WU

摘要:

锂硫(Li-S)电池作为一种具有高能量密度的储能体系,是能源领域的重点研究对象。但其在充放电过程中可溶性多硫化锂的穿梭效应及氧化还原动力学缓慢等问题,严重影响了锂硫电池的商业化发展进程。电解液作为锂硫电池体系中不可或缺的一部分,通常由锂盐、有机溶剂以及各类添加剂共同组成,在充放电过程中起到保护锂负极、传导锂离子的作用,其功能对电池的反应过程、循环寿命和安全性能等方面均产生影响。近年来,电解液添加剂备受研究者的关注,将其加入到电解液中可实现抑制多硫化物(LiPSs)穿梭、增强电极界面稳定性和提高离子电导率等功能。通过对近期相关文献的调查,介绍了含氮、氟、硫和多原子协同作用的添加剂的分子设计,及其提升电池充放电的氧化还原动力学和抑制多硫化物穿梭效应的策略及研究进展,并分析其因电负性的差异,在调控多硫化物和电极界面表现出的不同机制。简要阐述了锂盐在电解液中的重要作用,包括提供锂离子,参与电极反应过程,维持电荷平衡和保障离子传导等,为锂硫电池电解液添加剂的分子设计与实际应用拓展了思路。最后展望了锂硫电池电解液添加剂的未来发展方向。

关键词: 锂硫电池, 电解液添加剂, 界面, 动力学, 多硫化物

Abstract:

Lithium sulfur(Li-S) batteries, as an energy storage system with high energy density, are a key research object in the field of energy. However, problems such as the shuttle effect of soluble lithium polysulfides and slow redox kinetics during charge and discharge have seriously hampered the commercialization of Li-S batteries. As an indispensable part of the lithium sulfur battery system, the electrolyte is usually composed of lithium salts, organic solvents, and various additives. It plays a role in protecting the lithium negative electrode and conducting lithium ions during the charging and discharging process. Its function has an impact on the reaction process, cycle life, and safety performance of the battery. In recent years, electrolyte additives have attracted much attention from researchers. Adding them to electrolytes can achieve functions such as inhibiting polysulfide (LiPSs) shuttle, enhancing electrode interface stability, and improving ion conductivity. Through a survey of recent relevant literature, this article introduces the molecular design of additives containing nitrogen, fluorine, sulfur, and multi atom synergistic effects, as well as strategies and research progress to enhance the redox kinetics of battery charging and discharging and suppress the shuttle effect of polysulfides. It also analyzes the different mechanisms exhibited by these additives in regulating the interface between polysulfides and electrodes due to differences in electronegativity. At the same time, the important role of lithium salts in electrolytes was briefly explained, including providing lithium ions, participating in electrode reaction processes, maintaining charge balance, and ensuring ion conduction, which expanded the ideas for the molecular design and practical application of lithium sulfur battery electrolyte additives. Finally, we provide some perspectives on the future development of electrolyte additives for lithium-sulfur batteries.

Key words: lithium-sulfur battery, electrolytes additive, interface, kinetics, polysulfides

中图分类号: