化工学报

• •    

考虑绿电-绿氢-绿热替代的煤制尿素工艺的能量-经济-环境分析

段睿阳1(), 王帅2, 吴乐3, 康丽霞1(), 刘永忠1   

  1. 1.西安交通大学化工系,陕西 西安 710049
    2.中国中煤能源研究院有限责任公司,陕西 西安 710054
    3.西北大学化工系,陕西 西安 710127
  • 收稿日期:2025-09-16 修回日期:2025-11-17 出版日期:2025-11-18
  • 通讯作者: 康丽霞
  • 作者简介:段睿阳(2002—),男,硕士研究生,ryduan@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(U24B6016);国家自然科学基金项目(22378323)

Energy-economic-environmental analysis of coal-based urea production considering green power-hydrogen-heat substitution

Ruiyang DUAN1(), Shuai WANG2, Le WU3, Lixia KANG1(), Yongzhong LIU1   

  1. 1.Department of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2.China Coal Energy Research Institute Company Limited, Xi’an 710054, Shaanxi, China
    3.Department of Chemical Engineering, Northwest University, Xi’an 710127, Shaanxi, China
  • Received:2025-09-16 Revised:2025-11-17 Online:2025-11-18
  • Contact: Lixia KANG

摘要:

本文以实际百万吨级煤制尿素工艺为对象,首先结合全流程模拟、技术经济性分析和全生命周期分析技术,系统评估了该工艺的能源利用效率、经济性和环境性。结果表明,煤制尿素工艺热量需求大,通过热量集成可基本实现内部工艺流股的升温需求,全流程热集成回收余热271MW,完全覆盖冷流股升温需求,系统能量利用效率从44.7 %提升至52.9 %,但气化炉仍需1340MW的外部高温供热。经济性分析表明,煤气化投资和公用工程费用分别是煤制尿素工艺投资费用和运营费用的主要来源,占比均超过60 %,煤价和空分装置投资则是影响煤制尿素工艺生产成本的关键因素。生命周期评价(LCA)结果显示,煤制氢、氨和尿素的全球变暖潜值(GWP)分别为21.77 t CO2-eq/t H2、4.725 t CO2-eq/t NH3和2.374 t CO2-eq/t 尿素。其中原料煤相关的碳排占53.2 %,其次为热电相关的间接排放,因此需要通过原料替代和引入绿电绿热以降低碳排。其次,在考虑绿电、绿氢、绿热替代的基础上,探讨了绿氢制尿素工艺相较于传统煤基工艺的经济和环境效益,结果表明绿氢制尿素工艺的投资费用是煤基工艺的1.81倍,其中电解槽费用占72.73 %。使用电网、可再生电力、可再生热电的工艺的生产成本分别为传统工艺的1.61、1.22和1.35倍。最后,分析和对比了电解槽投资成本与绿电价格变化时的生产成本演化规律,以提供新型工艺替代煤基工艺的阈值条件。碳排方面,仅替代电力来源、替代原料煤并使用绿电以及联用绿电绿热三个场景的GWP分别为2.29 t CO2-eq/t 尿素、0.61 t CO2-eq/t 尿素和0.29 t CO2-eq/t 尿素。以上研究不但可为煤制尿素及其他煤基化工行业的低碳转型与可持续发展提供量化分析工具,还可为煤化工企业的降本、节能、减排等策略制定提供精准指导。

关键词: 煤制尿素, 流程模拟, 新能源, 能量, 经济, 环境

Abstract:

This study focuses on a commercial-scale, one-million-ton-per-year coal-based urea production process. By integrating process-wide simulation, techno-economic analysis, and life cycle assessment (LCA) methods, the energy efficiency, economic performance, and environmental impact of the system were systematically evaluated. The results indicate that the coal-based urea process has a substantial heat demand; through process heat integration, the internal heating requirements of cold process streams can be fully met. A total of 271 MW of waste heat was recovered across the system, completely satisfying the heating demand of cold streams and increasing the overall energy utilization efficiency from 44.7 % to 52.9 %. Nevertheless, the gasifier still requires 1340 MW of external high-temperature heat input. The techno-economic analysis shows that the investment in coal gasification and the cost of utilities are the dominant contributors to total capital and operating expenses, each accounting for more than 60 %. The prices of coal feedstock and the investment cost of the air separation unit were identified as the key factors influencing the production cost of coal-based urea. The life cycle assessment results further reveal that the global warming potentials (GWP) of coal-derived hydrogen, ammonia, and urea are 21.77 t CO2-eq/t H2, 4.725 t CO2-eq/t NH3, and 2.374 t CO2-eq/t urea, respectively. Carbon emissions associated with the coal feedstock contribute 53.2 % of the total, followed by indirect emissions from heat and power generation, suggesting that raw material substitution and the integration of green electricity and green heat are essential for emission reduction. Furthermore, considering the substitution of green electricity, green hydrogen, and green heat, the study explored the techno-economic and environmental advantages of green-hydrogen-based urea synthesis compared with the conventional coal-based route. The results show that the total capital investment of the green hydrogen process is 1.81 times that of the coal-based process, with electrolyzer costs accounting for 72.73 %. The production costs of urea using grid electricity, renewable electricity, and renewable cogeneration are 1.61, 1.22, and 1.35 times those of the conventional process, respectively. Finally, the evolution of production cost was analyzed under varying electrolyzer investment and green electricity price conditions, providing threshold criteria for economically viable substitution of the coal-based route. In terms of carbon emissions, the global warming potentials of three decarbonization scenarios - (i) electricity substitution only, (ii) coal feedstock replacement with green electricity, and (iii) combined utilization of green electricity and green heat, are 2.29 t CO2-eq/t urea, 0.61 t CO2-eq/t urea, and 0.29 t CO2-eq/t urea, respectively. This work not only provides a quantitative analytical framework for the low-carbon transition and sustainable development of coal-based urea and related coal chemical industries but also offers practical guidance for cost reduction, energy efficiency improvement, and emission mitigation strategies in industrial applications.

Key words: coal-to-urea, process simulation, renewable energy, energy, economics, environment

中图分类号: