化工学报

• •    

基于DAT-MIGAN模型的化工过程数据填充方法

耿志强1,2(), 李嘉骏1,2, 魏微1,2, 韩永明1,2, 胡渲1,2, 王孟志1,2()   

  1. 1.北京化工大学信息科学与技术学院,北京 100029
    2.智能过程系统工程教育部工程研究中心,北京 100029
  • 收稿日期:2025-09-29 修回日期:2025-11-04 出版日期:2025-11-19
  • 通讯作者: 王孟志
  • 作者简介:耿志强(1973—),男,教授,gengzhiqiang@mail.buct.edu.cn
  • 基金资助:
    国家重点研发计划项目(2024YFB4105203);国家自然科学基金优秀青年项目(62422303);国家自然科学基金项目(62373035);北京市自然科学基金-丰台创新联合基金重点项目(L241015)

Chemical process data imputation method based on DAT-MIGAN model

Zhiqiang GENG1,2(), Jiajun LI1,2, Wei WEI1,2, Yongming HAN1,2, Xuan HU1,2, Mengzhi WANG1,2()   

  1. 1.College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
    2.Engineering Research Center of Intelligent PSE, Ministry of Education of China, Beijing 100029, China
  • Received:2025-09-29 Revised:2025-11-04 Online:2025-11-19
  • Contact: Mengzhi WANG

摘要:

化工过程具有高温、强腐蚀等复杂工况,易导致传感器失效、信号异常等问题,从而引起长时间序列数据缺失。而传统统计填充和机器学习方法难以同时捕捉全局趋势与局部特征,无法有效应对该问题。为此,本论文提出了一种融合深度自适应Transformer(Deep Adaptive Transformer, DAT)与生成式对抗网络(MIGAN)的DAT-MIGAN数据填充方法。该方法利用DAT弥补MIGAN在学习短期和长期依赖上的不足,并在潜在空间融合多尺度注意力特征,构建全局-局部协同的缺失值估计网络,从而实现对长序列缺失数据的更精准填充。田纳西-伊斯曼( Tennessee Eastman,TE) 数据集与化工装置生产数据实验表明,所提DAT-MIGAN算法能有效应对化工过程中长序列数据中的复杂缺失模式,显著提高了化工行业长序列缺失数据的填充准确度。

关键词: 算法, 神经网络, 数据填充, 预测, 长序列缺失

Abstract:

Chemical processes are characterized by highly complex operating conditions, including elevated temperatures, high pressures, and severe corrosive environments. These harsh conditions frequently induce sensor malfunctions and signal anomalies, leading to missing values in long-term industrial time series data. Conventional statistical imputation techniques and machine learning approaches often fail to simultaneously capture global temporal dependencies and localized dynamic features, thus exhibiting limited effectiveness in such scenarios. To address this challenge, this study proposes a novel Deep Adaptive Transformer-enhanced Multi-scale Iterative Generative Adversarial Network (DAT-MIGAN) for missing data imputation. The framework integrates the generative capability of MIGAN with the sequence modeling strengths of DAT, thereby overcoming the limitations of conventional GAN-based methods in representing both short- and long-term dependencies. By introducing multi-scale attention mechanisms within the latent space, the proposed method establishes a global–local collaborative imputation strategy that enables more accurate reconstruction of missing segments in long-sequence data. Extensive experiments conducted on the Tennessee Eastman (TE) benchmark dataset and real-world Chemical process plant data verify the robustness and effectiveness of DAT-MIGAN. Results demonstrate that the proposed approach substantially outperforms existing methods in handling complex missing patterns, offering a reliable solution for accurate long-sequence data imputation in the Chemical process industry.

Key words: algorithm, neural networks, data imputation, prediction, long-sequence missing

中图分类号: