化工学报

• •    

消防服应用的磺化PBI纤维热解特性及其动力学研究

朱方龙1(), 冯倩倩1,2   

  1. 1.惠州学院服装学院,广东 惠州 516007
    2.东华大学纺织学院,上海 201620
  • 收稿日期:2025-10-13 修回日期:2025-12-13 出版日期:2025-12-30
  • 通讯作者: 朱方龙
  • 基金资助:
    广东省重点领域研发计划项目(2024B1111060002);广东省基础与应用基础基金研究项目(2022A1515140036)

Pyrolysis characteristics and kinetics of sulfonated PBI fibers used for firefighting clothing

Fanglong ZHU1(), Qianqian FENG1,2   

  1. 1.College of Fashion, Huizhou University, Huizhou 516007, Guangdong, China
    2.College of Textile, Donghua University, Shanghai 201620, China
  • Received:2025-10-13 Revised:2025-12-13 Online:2025-12-30
  • Contact: Fanglong ZHU

摘要:

本研究采用热重(TG)、差示扫描量热(DSC)与TG-IR联用技术,系统分析了磺化聚苯并咪唑(PBI)纤维在氮气下的热解行为与动力学。结果表明,其热失重过程分为水分脱除、磺酸基分解及主链裂解三个阶段。DSC曲线显示与失重阶段对应的两个显著吸热峰,其中磺酸基分解的强吸热行为表明材料具备优异的热防护潜力。热解释放出SO₂、NH₃和HCN等气体,1000℃时残炭率达67%(表观值为58.5%),显示出良好热稳定性与成炭能力。采用FWO、KAS、Friedman和Starink四种无模型法进行动力学分析,发现第一阶段活化能随转化率升高,机制由化学控制转向扩散控制;第二阶段活化能呈“先降后升”,存在竞争反应路径。Malek分析进一步揭示两阶段在反应后期均发生机理转变,无法由单一模型描述。本研究阐明了sPBI纤维热解的复杂多步反应特征,为其在高温防护领域的应用与热防护性能模拟提供了理论支撑。

关键词: 磺化PBI纤维, 热解, 动力学模型

Abstract:

This work systematically investigated the pyrolysis behavior and kinetics of sulfonated PBI (sPBI) fiber under nitrogen atmosphere using thermogravimetry (TG), differential scanning calorimetry (DSC), and TG-IR coupled techniques. The results indicate that the mass loss process consists of three distinct stages: moisture removal, decomposition of sulfonic acid groups, and main chain cleavage. The DSC curve reveals two prominent endothermic peaks corresponding to these mass loss stages, with the strong endothermic behavior during sulfonic group decomposition suggesting excellent thermal protection potential. The pyrolysis process releases gases such as SO₂, NH₃, and HCN, and a high char residue of 67% is achieved at 1000°C(with an apparent value of 58.5%). This demonstrates superior thermal stability and char-forming ability. Kinetics analysis using four model-free methods (FWO, KAS, Friedman, and Starink) reveals that in the first decomposed stage, the activation energy increases with conversion, indicating a transition from chemical reaction control to diffusion control. In the second decomposed stage, the activation energy initially decreases and then increases, suggesting competing reaction pathways. Malek analysis further indicates a mechanism shift in the later phase of both stages, which cannot be described by a single reaction model. This work elucidates the complex multi-step nature of sPBI fiber pyrolysis, providing a theoretical foundation for its application in high-temperature protection and the simulation of its thermal protective performance.

Key words: sPBI fiber, pyrolysis, kinetic modeling

中图分类号: