化工学报

• •    

氧化铝纳米流体液冷电池热管理性能研究

侯竣升1(), 李栋宇1, 黄磊1, 吴俊杰1, 陈真真2, 郝南京1()   

  1. 1.西安交通大学化学工程与技术学院,陕西 西安 710049
    2.西安微化精工科技有限公司,陕西 西安 712000
  • 收稿日期:2025-10-19 修回日期:2025-12-29 出版日期:2025-12-30
  • 通讯作者: 郝南京
  • 作者简介:侯竣升(1998—),男,博士研究生,houjunsheng@stu.xjtu.edu.cn
  • 基金资助:
    国家重点研发计划课题资助项目(2023YFC3904301)

Research on aluminum oxide nanofluid liquid cooling battery thermal management performance

Junsheng HOU1(), Dongyu LI1, Lei HUANG1, Junjie WU1, Zhenzhen CHEN2, Nanjing HAO1()   

  1. 1.School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    2.Nanofluids Technologies Co. Ltd. , Xi’an 712000, Shaanxi, China
  • Received:2025-10-19 Revised:2025-12-29 Online:2025-12-30
  • Contact: Nanjing HAO

摘要:

动力电池组在充放电过程中会积攒大量热量,有必要设计热管理系统控制电池组温升。液冷板式间接冷却是一种应用广泛,效果优异的电池热管理方式。然而,传统的冷却液热导率较低,换热能力有限,而纳米流体可以有效提高基础冷却液的热导率,提高整体热管理性能。因此,本研究使用两步法合成了具有较高热导率和稳定性的氧化铝纳米流体,并进行了电池热管理实验测试,探究了功率、流量和浓度对电池热管理性能的影响,结果表明,纳米流体的加入可以有效降低整体热源温升,压降无明显提高。且在低流量、高功率和高浓度下降低效果最佳,当进口流量为100 mL/min,发热功率为150 W时,热源最高温度降低了1.6 °C。综合传热性能和功耗的评估中,在进口流量为100 mL/min,加热功率为150 W条件下,相比去离子水,2 wt%纳米流体的综合评估指标提升了10.4%,氧化铝纳米流体的加入有效提高了电池热管理系统综合性能。

关键词: 传热, 纳米粒子, 氧化铝, 热导率, 综合性能评估

Abstract:

Thermal management systems are critical for mitigating excessive heat accumulation in power battery packs during charging/discharging cycles. Among existing strategies, cold plate-based indirect liquid cooling has emerged as a dominant solution due to its superior thermal management performance. However, conventional coolants face intrinsic limitations in heat dissipation capacity caused by the low thermal conductivity. This study addresses this challenge by synthesizing a highly stable aluminum oxide (Al2O3) nanofluids with enhanced thermal conductivity through a two-step preparation method. The thermal management performance of nanofluid is experimentally evaluated under varying operational conditions, including heat generation power, coolant flow rate, and nanofluid concentration. Experimental results demonstrate that nanofluid reduces maximum temperatures by up to 1.6 °C compared to base fluids under high power (150 W) and low flow rate (100 mL/min) conditions, achieving a 10.4% improvement in the comprehensive performance evaluation criterion (PEC) that considers heat transfer enhancement and power consumption. These findings establish nanofluid-based liquid cooling as a promising pathway for advancing battery thermal management systems in electric vehicles.

Key words: heat transfer, nanoparticles, aluminum oxide, thermal conductivity, comprehensive performance evaluation

中图分类号: