CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2636-2644.DOI: 10.11949/0438-1157.20181312
• Surface and interface engineering • Previous Articles Next Articles
Zichao JIANG1(),Jianhua FANG1(),Zeqi JIANG2,Xin WANG1,Yanhan FENG1,Jianhua DING1
Received:
2018-11-12
Revised:
2019-04-13
Online:
2019-07-05
Published:
2019-07-05
Contact:
Jianhua FANG
姜自超1(),方建华1(),江泽琦2,王鑫1,冯彦寒1,丁建华1
通讯作者:
方建华
作者简介:
姜自超(1990—),男,博士研究生,<email>614327919@qq.com</email>
基金资助:
CLC Number:
Zichao JIANG, Jianhua FANG, Zeqi JIANG, Xin WANG, Yanhan FENG, Jianhua DING. Tribological properties ofnano-WS2 lubricating oil additives under DC magnetic field[J]. CIESC Journal, 2019, 70(7): 2636-2644.
姜自超, 方建华, 江泽琦, 王鑫, 冯彦寒, 丁建华. 纳米WS2润滑油添加剂在直流磁场下的摩擦磨损特性[J]. 化工学报, 2019, 70(7): 2636-2644.
Add to citation manager EndNote|Ris|BibTeX
1 | RemskarM, VirsekM, JesihA. WS2 nanobuds as a new hybrid nanomaterial[J]. Nano Letters, 2008, 8(1): 76-80. |
2 | LinJ Y, ZhangR X, YeW Y, et al. Nano-WS2 embedded PES membrane with improved fouling and permselectivity[J]. Journal of Colloid & Interface Science, 2013, 396(6): 120-128. |
3 | DuanJ J, ChenS, ChambersB A, et al. 3D WS2 nanolayers@heteroatom‐doped graphene films as hydrogen evolution catalyst electrodes[J]. Advanced Materials, 2015, 27(28): 4234-4241. |
4 | ZhouL Y, YanS C, PanL J, et al. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries[J]. Nano Research, 2016, 9(3): 857-865. |
5 | MaT, ZhangT, GaoP G, et al. Synthesis and properties of ultrahigh molecular weight polyethylene/WS₂ nanoparticle fiber for bullet-proof materials[J]. Chinese Science Bulletin, 2013, 58(8): 945-948. |
6 | WuN, HuN N, ZhouG B, et al. Tribological properties of lubricating oil with micro/nano-scale WS2 particles[J]. Journal of Experimental Nanoscience, 2018, 13(1): 1-12. |
7 | ZhengD, WuY P, LiZ Y, et al. Tribological properties of WS2/graphene nanocomposites as lubricating oil additives[J]. RSC Advances, 2017, 7(23): 14060-14068. |
8 | 杨士钊, 胡建强, 谢凤, 等. 低纳米二硫化钨含量润滑油抗磨性能[J]. 石油学报: 石油加工, 2017, 33(3): 543-548. |
YangS Z, HuJ Q, XieF, et al. Anti-wear properties of low nano-WS2 content lubricant [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(3): 543-548. | |
9 | 李长生, 于云, 刘艳清, 等. WS2纳米颗粒的合成及摩擦学性能研究[J]. 无机化学学报, 2008, 24(2): 275-279. |
LiC S, YuY, LiuY Q, et al. Synthesis and tribological properties of WS2 nanoparticles[J]. Chinese Journal of Inorganic Chemistry, 2008, 24(2): 275-279. | |
10 | MaharajD, BhushanB. Effect of MoS2, and WS2, nanotubes on nanofriction and wear reduction in dry and liquid environments[J]. Tribology Letters, 2013, 49(2): 323-339. |
11 | RatoiM, NisteV B, WslkerJ, et al. Mechanism of action of WS2, lubricant nanoadditives in high-pressure contacts[J]. Tribology Letters, 2013, 52(1): 81-91. |
12 | LiS P, DengJ X, YanG Y, et al. Microstructure, mechanical properties and tribological performance of TiSiN–WS2, hard-lubricant coatings[J]. Applied Surface Science, 2014, 309(4): 209-217. |
13 | ChenC B, MaoD H, ShiC, et al. Experimental study on the tribological characteristics of nanometer WS2 lubricating oil additive based on engine oil[J]. Advanced Materials Research, 2011, 328/329/330: 203-208. |
14 | AldanaP U, DassenoyF, VacherB, et al. WS2 nanoparticles anti-wear and friction reducing properties on rough surfaces in the presence of ZDDP additive[J]. Tribology International, 2016, 102: 213-221. |
15 | AldanaP U, Vacher, Béatrice, Le MogneT, et al. Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime[J]. Tribology Letters, 2014, 56(2): 249-258. |
16 | MujuM K, RadhakrishnaA. Wear of non-magnetic materials in the presence of a magnetic field[J]. Wear, 1980, 58(1): 49-58. |
17 | SenouciA, ZaidiH, FreneJ, et al. Damage of surfaces in sliding electrical contact copper/steel[J]. Applied Surface Science, 1999, 144/145(98): 287-291. |
18 | 魏永辉, 张永振, 陈跃. 磁场干涉对不同磁属性材料干摩擦学特性的影响[J].机械工程学报, 2012, (12): 102-109. |
WeiY H, ZhangZ Y, ChenY. Influence of magnetic field interfering on dry-sliding tribological characteristics of materials with different magnetic properties [J]. Journal of Mechanical Engineering, 2012, (12): 102-109. | |
19 | 张敏, 凤仪. 电流对碳纳米管-银-石墨复合材料摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25(4): 328-332. |
ZhangM, FengY. Effect of electric current on the friction and wear behavior of carbon nanotubes-silver-graphite composite[J].Tribology, 2005, 25(4): 328-332. | |
20 | JiangZ Q, FangJ H, ChenB S, et al. Effect of magnetic field on tribological properties of lubricating oils with and without tricresyl phosphate[J]. China Petroleum Processing & Petrochemical Technology, 2016, 18(3): 119-124. |
21 | JiangZ Q, FangJ H, ChenB S, et al. Improvement of magnetic field on tribological properties of lubricating oils with zinc butyloctyl dithiophosphate[J]. China Petroleum Processing & Petrochemical Technology, 2016, 18(4): 92-98. |
22 | 石琛, 毛大恒, 毛向辉. 纳米二硫化钨颗粒的分散稳定性[J]. 中南大学学报(自然科学版), 2010, 41(2): 476-482. |
ShiC, MaoD H, MaoX H. Dispersion stability of nano-tungsten disulfide particulates[J]. Journal of Central South University(Science and Technology), 2010, 41(2): 476-482. | |
23 | 陈汉林, 陈国需, 杜鹏飞, 等. 二硫化钨纳米粉体作为锂基润滑脂添加剂的摩擦学研究[J]. 摩擦学学报, 2015, 35(6): 651-657. |
ChenH L, ChenG X, DuP F, et al. Tribology of nano-tungsten disulfide powder as an lubricating additive for lithium grease[J]. Tribology, 2015, 35(6): 651-657. | |
24 | ZhangR C, QaioD, LiuX Q, et al. A facile and effective method to improve the dispersibility of WS2 nanosheets in PAO8 for the tribological performances[J]. Tribology International, 2018, 118: 60-70. |
25 | 解挺, 闫照明, 杨婷婷, 等. 外加磁场对摩擦副摩擦学性能影响的研究进展[J]. 合肥工业大学学报(自然科学版), 2012, 35(12): 1601-1604. |
XieT, YanZ M, YangT T, et al. Study progress of the effect of external magnetic field on tribological properties of friction pair[J]. Journal of Hefei University of Technology(Natural Science), 2012, 35(12): 1601-1604. | |
26 | WeiY H, ZhangY Z, ChenY, et al. Impact of material permeability on friction and wear properties under the interference of DC steady magnetic field[J]. Tribology International, 2013, 57(4): 162-169. |
27 | XieG X, GuoD, LuoJ B. Lubrication under charged conditions[J]. Tribology International, 2015, 84: 22-35. |
28 | 杨钊龙. 若干非铁磁材料的低维磁特性研究[D]. 兰州: 兰州大学, 2016. |
YangZ L. Low-dimensional magnetic characteristics of several non-ferromagnetic materials[D]. Lanzhou: Lanzhou University, 2016. | |
29 | HuoN J, LiY, KangJ, et al. Edge-states ferromagnetism of WS2 nanosheets[J]. Applied Physics Letters, 2014, 104(20): 2831-2836. |
30 | YangZ L, GaoD Q, ZhangJ, et al. Realization of high Curie temperature ferromagnetism in atomically thin MoS2 and WS2 nanosheets with uniform and flower-like morphology[J]. Nanoscale, 2014, 7(2): 650-658. |
31 | LiH P, LiuS, HuangS L, et al. Impurity-induced ferromagnetism and metallicity of WS2 monolayer[J]. Ceramics International, 2015, 42(2): 2364-2369. |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[3] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[4] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[5] | Zhiping ZHAO, Chen CHEN, Qiong TANG, Hong XU, Lei LIU, Jinxiang DONG. Rheological and tribological properties of poly-hexylnaphthalene/ poly-α-olefin lithium grease [J]. CIESC Journal, 2023, 74(6): 2555-2564. |
[6] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[7] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[8] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
[9] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[10] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[11] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[12] | Xiaoqing SHI, Weixuan ZHU, Haotian YE, Zhizhong HAN, Hongguang DONG. Pretreatment process simulation and multi-objective optimization of C5 by reactive dividing wall column [J]. CIESC Journal, 2022, 73(3): 1246-1255. |
[13] | Wei SONG, Wanjia LI, Shurong YU, Rongrong MA. Effect of thermal mechanical coupling on fretting wear behavior of TC4 alloy [J]. CIESC Journal, 2022, 73(3): 1324-1334. |
[14] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[15] | Nan ZHOU, Zan WANG, Yingjuan SHAO, Wenqi ZHONG. Experimental study on attrition characteristics of coal tar pitch particles during gas-solid fluidization [J]. CIESC Journal, 2022, 73(2): 587-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||