CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1324-1334.DOI: 10.11949/0438-1157.20211559
• Surface and interface engineering • Previous Articles Next Articles
Wei SONG(),Wanjia LI,Shurong YU(),Rongrong MA
Received:
2021-11-01
Revised:
2021-12-20
Online:
2022-03-14
Published:
2022-03-15
Contact:
Shurong YU
通讯作者:
俞树荣
作者简介:
宋伟(1979—),男,博士,副教授,基金资助:
CLC Number:
Wei SONG, Wanjia LI, Shurong YU, Rongrong MA. Effect of thermal mechanical coupling on fretting wear behavior of TC4 alloy[J]. CIESC Journal, 2022, 73(3): 1324-1334.
宋伟, 李万佳, 俞树荣, 马荣荣. 热力耦合下TC4合金微动磨损行为影响的研究[J]. 化工学报, 2022, 73(3): 1324-1334.
Add to citation manager EndNote|Ris|BibTeX
样品 | 化学成分/%(质量) | |||||
---|---|---|---|---|---|---|
TC4 | Al | V | O | Fe | N | Ti |
6.5 | 4.3 | 0.08 | 0.06 | 0.01 | Bal. | |
GCr15 | Cr | C | Mn | Si | Mo | Fe |
1.6 | 1.0 | 0.3 | 0.3 | 0.08 | Bal. |
Table 1 Chemical composition of TC4 and GCr15
样品 | 化学成分/%(质量) | |||||
---|---|---|---|---|---|---|
TC4 | Al | V | O | Fe | N | Ti |
6.5 | 4.3 | 0.08 | 0.06 | 0.01 | Bal. | |
GCr15 | Cr | C | Mn | Si | Mo | Fe |
1.6 | 1.0 | 0.3 | 0.3 | 0.08 | Bal. |
Materials | Rp/MPa | Rm/MPa | HRC | E/GPa |
---|---|---|---|---|
TC4 | ≥825 | ≥895 | 30 | 110 |
GCr15 | 1700 | 2000 | 68 | 210 |
Table 2 Main mechanical properties of TC4 and GCr15
Materials | Rp/MPa | Rm/MPa | HRC | E/GPa |
---|---|---|---|---|
TC4 | ≥825 | ≥895 | 30 | 110 |
GCr15 | 1700 | 2000 | 68 | 210 |
Fig.8 The microscopic appearance of the TC4 alloy surface under different conditions at 300 and 500℃(a)~(c): Fn =50 N, 300℃; (d)~(f): Fn=50 N, 500℃; (g)~(i): Fn =100 N, 500℃
1 | 周仲荣, 朱旻昊. 复合微动磨损[M]. 上海: 上海交通大学出版社, 2004. |
Zhou Z R, Zhu M H. Composite fretting wear[M]. Shanghai: Shanghai Jiao Tong University Press, 2004. | |
2 | 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10. |
Cai J M, Mi G B, Gao F, et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering, 2016, 44(8): 1-10. | |
3 | Philip J T, Mathew J, Kuriachen B. Tribology of Ti6Al4V: a review[J]. Friction, 2019, 7(6): 497-536. |
4 | 魏世忠, 徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 56(4): 523-538. |
Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials[J]. Acta Metallurgica Sinica, 2020, 56(4): 523-538. | |
5 | 李海燕, 刘欢, 张秀菊, 等. HVOF喷涂用于提高锅炉换热面耐磨损耐腐蚀性能综述[J]. 化工学报, 2021, 72(4): 1833-1846. |
Li H Y, Liu H, Zhang X J, et al. Summary of improving erosion and corrosion resistance of heat exchange surfaces in boilers through HVOF technology[J]. CIESC Journal, 2021, 72(4): 1833-1846. | |
6 | 杜文欣, 伍联营, 张伟涛, 等. 钢球在液体中振动磨损量的研究[J]. 化工学报, 2019, 70(4): 1505-1511. |
Du W X, Wu L Y, Zhang W T, et al. Research on vibration attrition of steel balls in liquid[J]. CIESC Journal, 2019, 70(4): 1505-1511. | |
7 | 王兰, 王树奇, 李新星, 等. TC4合金干滑动磨损性能的研究[J]. 摩擦学学报, 2015, 35(5): 629-634. |
Wang L, Wang S Q, Li X X, et al. Dry sliding wear performance of TC4 alloy[J]. Tribology, 2015, 35(5): 629-634. | |
8 | Ganesh B K C, Ramanaih N, Chandrasekhar Rao P V. Dry sliding wear behavior of Ti-6Al-4V implant alloy subjected to various surface treatments[J]. Transactions of the Indian Institute of Metals, 2012, 65(5): 425-434. |
9 | Hager C H, Sanders J H, Sharma S. Effect of high temperature on the characterization of fretting wear regimes at Ti6Al4V interfaces[J]. Wear, 2006, 260(4/5): 493-508. |
10 | Kermanpur A, Sepehri Amin H, Ziaei-Rad S, et al. Failure analysis of Ti6Al4V gas turbine compressor blades[J]. Engineering Failure Analysis, 2007, 15(8): 1052-1064. |
11 | Bhaumik S K, Rangaraju R, Venkataswamy M A, et al. Fatigue fracture of crankshaft of an aircraft engine[J]. Engineering Failure Analysis, 2002, 9(3): 255-263. |
12 | Zhou H Y, Shi X L, Lu G C, et al. Friction and wear behaviors of TC4 alloy with surface microporous channels filled by Sn-Ag-Cu and Al2O3 nanoparticles[J]. Surface and Coatings Technology, 2020, 387: 125552. |
13 | 马润梅, 赵祥, 李双喜, 等. 颗粒介质用机械密封热力耦合变形及摩擦磨损研究[J]. 化工学报, 2021, 72(11): 5726-5737, 5893. |
Ma R M, Zhao X, Li S X, et al. Research on thermal mechanical coupling deformation and friction and wear of mechanical seal for granular medium[J]. CIESC Journal, 2021, 72(11): 5726-5737, 5893. | |
14 | 刘道新, 何家文. 喷丸强化因素对Ti合金微动疲劳抗力的作用[J]. 金属学报, 2001, 37(2): 156-160. |
Liu D X, He J W. Effectof shot peening factors on fretting fatigue resistance titanium alloy[J]. Acta Metallurgica Sinica, 2001, 37(2):156-160. | |
15 | 蔡振兵, 朱旻昊. 扭动微动磨损的研究进展和现状[J]. 中国表面工程, 2014, 27(4): 1-11. |
Cai Z B, Zhu M H. Research and prospect on the torsional fretting wear[J]. China Surface Engineering, 2014, 27(4): 1-11. | |
16 | 何燕妮, 俞树荣, 李淑欣, 等. 摩擦氧化层对TC4合金磨损行为和摩擦系数的影响[J]. 稀有金属材料与工程, 2021, 50(4): 1417-1424. |
He Y N, Yu S R, Li S X, et al. Effect of tribo-oxide layers on wear properties and coefficient of friction of TC4 alloy in fretting[J]. Rare Metal Materials and Engineering, 2021, 50(4): 1417-1424. | |
17 | 俞树荣, 白利蓉, 景鹏飞, 等. 摩擦配副材料对TC4钛合金微动磨损行为的影响[J]. 润滑与密封, 2018, 43(8): 14-18. |
Yu S R, Bai L R, Jing P F, et al. Effect of counterpart materials on fretting wear behavior of TC4 titanium alloy[J]. Lubrication Engineering, 2018, 43(8): 14-18. | |
18 | 王兰, 张秋阳, 李新星, 等. 温度和载荷对TC4合金磨损性能的影响[J]. 稀有金属材料与工程, 2015, 44(2): 480-484. |
Wang L, Zhang Q Y, Li X X, et al. Effect of temperature and load on wear performance of TC4 Alloy[J]. Rare Metal Materials and Engineering, 2015, 44(2): 480-484. | |
19 | Guo X L, Lai P, Tang L C, et al. Effectes of sliding amplitude and normal load on the fretting wear behavior of alloy 690 tube exposed to high temperature water[J]. Tribology International, 2017, 116: 155-163. |
20 | 郭薇, 李健, 黄淑梅, 等. 微动幅值对Ti-6Al-4V合金摩擦特性的影响[J]. 钛工业进展, 2016, 33(5): 16-20. |
Guo W, Li J, Huang S M, et al. Effect of fretting amplitude on friction properties of Ti-6Al-4V alloy[J]. Titanium Industry Progress, 2016, 33(5): 16-20. | |
21 | Zhou Y, Shen M X, Cai Z B, et al. Study on dual rotary fretting wear behavior of Ti6Al4V titanium alloy[J]. Wear, 2017, 376/377: 670-679. |
22 | 丁燕, 柏林, 薛超凡, 等. TC21钛合金的高温微动磨损行为研究[J]. 南京航空航天大学学报, 2018, 50(1): 126-130. |
Ding Y, Bai L, Xue C F, et al. Fretting wear behavior of TC21 alloy materials at elevated temperature[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(1): 126-130. | |
23 | 柏林, 丁燕, 邓凯, 等. TC21钛合金微动磨损特性的研究[J]. 材料导报, 2013, 27(10): 79-82, 103. |
Bai L, Ding Y, Deng K, et al. Fretting wear behavior of TC21 alloy materials[J]. Materials Review, 2013, 27(10): 79-82, 103. | |
24 | 黄张洪, 曲恒磊, 邓超, 等. 航空用钛及钛合金的发展及应用[J]. 材料导报, 2011, 25(1): 102-107. |
Huang Z H, Qu H L, Deng C, et al. Development and application of aerial titanium and its alloys[J]. Materials Review, 2011, 25(1): 102-107. | |
25 | 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J].材料导报, 2020, 34(S1): 280-282. |
Li Y, Zhao Y Q, Zeng W D. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282. | |
26 | 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94. |
Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94. | |
27 | Pearson S R, Shipway P H. Is the wear coefficient dependent upon slip amplitude in fretting? Vingsbo and Söderberg revisited [J]. Wear, 2015, 330/331: 93-102. |
28 | Wang J F, Xue W H, Gao S Y, et al. Effect of groove surface texture on the fretting wear of Ti-6Al-4V alloy[J]. Wear, 2021, 486/487: 204079. |
29 | Kirk A M, Shipway P H, Sun W, et al. Debris development in fretting contacts-Debris particles and debris beds[J]. Tribology International, 2020, 149: 105592. |
30 | Lesnevskiy L N, Lyakhovetskiy M A, Savushkina S V.Fretting wear of composite ceramic coating produced on D16 aluminum-based alloy using microarc oxidation[J]. Journal of Friction and Wear, 2016, 37(3): 268-273. |
31 | Cheon S, Kim N. Prediction of tool wear in the blanking process using updated geometry[J]. Wear, 2016, 352/353: 160-170. |
32 | 景鹏飞, 俞树荣, 张克菲,等. 载荷及位移幅值对DLC薄膜微动磨损行为[J]. 摩擦学学报, 2021, 41(2): 213-222. |
Jing P F, Yu S R, Zhang K F, et al. Effects of load and displacement amplitude on fretting wear behavior of DLC film[J]. Tribology, 2021, 41(2): 213-222. | |
33 | Fouvry S, Kapsa P, Vincent L. An elastic-plastic shakedown analysis of fretting wear[J]. Wear, 2001, 247(1): 41-54. |
34 | 宋伟, 尘强, 俞树荣, 等. TC4合金在不同环境介质中微动磨损行为研究[J]. 稀有金属材料与工程, 2020, 49(7): 2393-2399. |
Song W, Chen Q, Yu S R, et al. Fretting wear behavior of TC4 alloy in different environmental media[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2393-2399. | |
35 | Fan N, Wang Y X, Wang Q F, et al. Effect of displacement amplitude on fretting wear of 304 stainless steel in air and sea water [J]. Lubrication Science, 2018, 30(3): 116-125. |
36 | Rigney D A. Some thoughts on sliding wear[J]. Wear, 1992, 152(1): 187-192. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Chongda DUAN, Xiaowei YAO, Jiahua ZHU, Jing SUN, Nan HU, Guangyue LI. Effects of environmental factors on calcium carbonate precipitation induced by Klebsiella aerogenes [J]. CIESC Journal, 2023, 74(8): 3543-3553. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[6] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[12] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[13] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||