CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2717-2726.DOI: 10.11949/0438-1157.20190055
• Energy and environmental engineering • Previous Articles Next Articles
Yunlong ZHOU(),Xiaoyuan YE,Dongyao LIN
Received:
2019-01-16
Revised:
2019-04-09
Online:
2019-07-05
Published:
2019-07-05
Contact:
Yunlong ZHOU
通讯作者:
周云龙
作者简介:
周云龙(1960—), 男,博士,教授,<email>neduzyl@163.com</email>
基金资助:
CLC Number:
Yunlong ZHOU, Xiaoyuan YE, Dongyao LIN. Photocatalytic hydrogen evolution by using corn stover as sacrificial agent under UV light irradiation[J]. CIESC Journal, 2019, 70(7): 2717-2726.
周云龙, 叶校源, 林东尧. 在紫外光下以玉米秸秆为牺牲剂提升光催化分解水制氢[J]. 化工学报, 2019, 70(7): 2717-2726.
Add to citation manager EndNote|Ris|BibTeX
纤维素 | 半纤维素 | 木质素 |
---|---|---|
24.7 | 33.4 | 11.9 |
纤维素 | 半纤维素 | 木质素 |
---|---|---|
24.7 | 33.4 | 11.9 |
条件 | 产氢量/ml | |
---|---|---|
可见光 | 紫外-可见光 | |
去离子水 | 0 | 0 |
去离子水+催化剂(TiO2) | 0 | 0 |
去离子水+催化剂(Pt/TiO2) | 0 | 0.038 |
去离子水+玉米秸秆颗粒 | 0 | 0 |
去离子水+玉米秸秆颗粒+催化剂(TiO2) | 0 | 0 |
去离子水+玉米秸秆颗粒+催化剂(Pt/TiO2) | 0 | 0.829 |
Table 2 Hydrogen production under different conditions
条件 | 产氢量/ml | |
---|---|---|
可见光 | 紫外-可见光 | |
去离子水 | 0 | 0 |
去离子水+催化剂(TiO2) | 0 | 0 |
去离子水+催化剂(Pt/TiO2) | 0 | 0.038 |
去离子水+玉米秸秆颗粒 | 0 | 0 |
去离子水+玉米秸秆颗粒+催化剂(TiO2) | 0 | 0 |
去离子水+玉米秸秆颗粒+催化剂(Pt/TiO2) | 0 | 0.829 |
Photocatalyst | Reaction medium | Light source | P/W | T/℃ | Production rates/(μmol/(g cat·h)) | Ref. |
---|---|---|---|---|---|---|
H2 | ||||||
Pt(1%)/P25TiO2 | H2O/corn stover(0.3 | Xe | 300 | 5 | 21.26① | this work |
Pt(0.32%)/TiO2 | H2O/cellulose(6.7 g/L) | UVA(366 nm) | 15×4 | — | 17① | [14] |
Pt(0.32%)/TiO2 | H2O/rice husk (6.7 g/L) | UVA(366 nm) | 15×4 | — | 6① | [14] |
Pt(0.32%)/P25TiO2 | H2O/alfalfa stems(6.7 g/L) | UVA (366 nm) | 15×4 | — | 100 | [14] |
Pt(5%)/TiO2 | H2O/rice plant(l/s, 0.3%) | Xe | 500 | r.t. | 8 | [20] |
Pt(5%)/TiO2 | H2O/seaweed(l/s, 0.3%) | Xe | 500 | r.t. | 25 | [24] |
Pt(5%)/TiO2 | H2O/sweet potato(l/s, 0.3%) | Xe | 500 | r.t. | 13 | [24] |
LaMnO3/CdS | sewage sludge | Xe | 300 | — | 129 | [36] |
Table 3 Photocatalytic hydrogen production comparison of different raw biomass as sacrificial agents
Photocatalyst | Reaction medium | Light source | P/W | T/℃ | Production rates/(μmol/(g cat·h)) | Ref. |
---|---|---|---|---|---|---|
H2 | ||||||
Pt(1%)/P25TiO2 | H2O/corn stover(0.3 | Xe | 300 | 5 | 21.26① | this work |
Pt(0.32%)/TiO2 | H2O/cellulose(6.7 g/L) | UVA(366 nm) | 15×4 | — | 17① | [14] |
Pt(0.32%)/TiO2 | H2O/rice husk (6.7 g/L) | UVA(366 nm) | 15×4 | — | 6① | [14] |
Pt(0.32%)/P25TiO2 | H2O/alfalfa stems(6.7 g/L) | UVA (366 nm) | 15×4 | — | 100 | [14] |
Pt(5%)/TiO2 | H2O/rice plant(l/s, 0.3%) | Xe | 500 | r.t. | 8 | [20] |
Pt(5%)/TiO2 | H2O/seaweed(l/s, 0.3%) | Xe | 500 | r.t. | 25 | [24] |
Pt(5%)/TiO2 | H2O/sweet potato(l/s, 0.3%) | Xe | 500 | r.t. | 13 | [24] |
LaMnO3/CdS | sewage sludge | Xe | 300 | — | 129 | [36] |
水平 | A 秸秆颗粒 浓度×103/(g/ml) | B 催化剂 浓度×102(g/ml) | C 秸秆颗粒 粒径/μm |
---|---|---|---|
1 | 0.1 | 0.3 | 1700~830 |
2 | 0.3 | 0.5 | 380~250 |
3 | 0.5 | 0.7 | ≤180 |
Table 4 Factor and level of orthogonal test
水平 | A 秸秆颗粒 浓度×103/(g/ml) | B 催化剂 浓度×102(g/ml) | C 秸秆颗粒 粒径/μm |
---|---|---|---|
1 | 0.1 | 0.3 | 1700~830 |
2 | 0.3 | 0.5 | 380~250 |
3 | 0.5 | 0.7 | ≤180 |
实验号 | A | B | C | 产氢量/ml |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1.154 |
2 | 1 | 2 | 2 | 1.088 |
3 | 1 | 3 | 3 | 0.367 |
4 | 2 | 1 | 2 | 1.805 |
5 | 2 | 2 | 3 | 1.812 |
6 | 2 | 3 | 1 | 0.950 |
7 | 3 | 1 | 3 | 1.466 |
8 | 3 | 2 | 1 | 1.801 |
9 | 3 | 3 | 2 | 1.079 |
k1 | 0.870 | 1.475 | 1.302 | |
k2 | 1.522 | 1.567 | 1.324 | |
k3 | 1.449 | 0.799 | 1.215 | |
R | 0.652 | 0.768 | 0.109 |
Table 5 Results of orthogonal design
实验号 | A | B | C | 产氢量/ml |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1.154 |
2 | 1 | 2 | 2 | 1.088 |
3 | 1 | 3 | 3 | 0.367 |
4 | 2 | 1 | 2 | 1.805 |
5 | 2 | 2 | 3 | 1.812 |
6 | 2 | 3 | 1 | 0.950 |
7 | 3 | 1 | 3 | 1.466 |
8 | 3 | 2 | 1 | 1.801 |
9 | 3 | 3 | 2 | 1.079 |
k1 | 0.870 | 1.475 | 1.302 | |
k2 | 1.522 | 1.567 | 1.324 | |
k3 | 1.449 | 0.799 | 1.215 | |
R | 0.652 | 0.768 | 0.109 |
1 | 崔明, 赵立欣, 田宜水, 等. 中国主要农作物秸秆资源能源化利用分析评价[J]. 农业工程学报, 2008, 24(12): 291-296. |
CuiM, ZhaoL X, TianY S, et al. Analysis and evaluation on energy utilization of main crop straw resources in China[J]. Transactions of the CSAE, 2008, 24(12) : 291-296. | |
2 | 黄浩, 胡国新. Ca(OH)2对生物质水蒸气气化制氢的影响[J]. 上海交通大学学报, 2007, 41(12): 1930-1933. |
HuangH, HuG X. The influence of Ca(OH)2 on hydrogen production from biomass by steam gasification[J]. Journal of Shanghai Jiaotong University, 2007, 41(12): 1930-1933. | |
3 | 刘刚, 孙丽娜, 李久海, 等.秸秆燃烧排放的正构烷烃及其碳同位素组成特征[J]. 中国环境科学, 2012, 32(12): 2184-2191. |
LiuG, SunL N, LiJ H, et al. Chemical and stable carbon isotopic composition of n-alkanes in maize straw and its smoke[J]. China Environmental Science, 2012, 32(12): 2184-2191. | |
4 | 李日强, 席玉英, 曹志亮, 等. 纤维素类废弃物的综合利用[J]. 中国环境科学, 2002, (1): 25-28. |
LiR Q, XiY Y, CaoZ L, et al. Complex use of wastes containing cellulose[J]. China Environmental Science, 2002, (1): 25-28. | |
5 | 王艳, 郝炜伟, 程轲, 等. 秸秆露天焚烧典型大气污染物排放因子[J]. 中国环境科学, 2018, 38(6): 2055-2061. |
WangY, HeW W, ChengK, et al. Emission factors of typical air pollutants from open burning of crop straws[J]. China Environmental Science, 2018, 38(6): 2055-2061. | |
6 | 吕鹏梅, 熊祖鸿, 王铁军, 等. 生物质流化床气化制取富氢燃气的研究[J]. 太阳能学报, 2003, 24(6): 758-764. |
LyuP M, XiongZ H, WangT J, et al. Biomass gasification in a fluidized bed to produce hydrogen rich gas[J]. Acta Energiae Solaris Sinica, 2003, 24(6): 758-764. | |
7 | 刘江华, 方新湘, 周华. 我国氢能源开发与生物制氢研究现状[J]. 新疆农业科学, 2004, 41(s1): 85-87. |
LiuJ H, FangX X, ZhouH. The state of hydrogen energy R&D and biohydrogen study in China[J]. Xinjiang Agricultural Sciences, 2004, 41(s1): 85-87. | |
8 | FujishimaA, HondaK. Photolysis-decomposition of water at surface of an irradiated semiconductor[J]. Nature, 1972, 238(1): 238-245. |
9 | 郭烈锦, 赵亮. 可再生能源制氢与氢能动力系统研究[J]. 中国科学基金, 2002, 16(4): 210-212. |
GuoL J, ZhaoL. Hydrogen production using solar energy and the study on hydrogen power system[J]. Bull. Natl. Nat. Sci. Found. China., 2002, 16(4): 210-212. | |
10 | 尹忠环, 李越湘, 彭绍琴, 等. 污染物乙醇胺Pt/TiO2光催化制氢[J]. 分子催化, 2007, 21(2): 155-161. |
YiZ H, LiY X, PengS Q, et al. Photocatalytic hydrogen generation in the presence of ethanolamines over Pt /TiO2[J]. Journal of Molecular Catalysis(China), 2007, 21(2): 155-161. | |
11 | LiuH, ZhouD, LiX, et al. Photoelectrocatalytic degradation of Rhodamine B using mesh Ti/TiO2 electrode[J]. Chinese Journal of Enviromental Science, 2002, 23(23): 47-51. |
12 | WangD, ZouY, WenS, et al. A passivated codoping approach to tailor the band edges of TiO2 for efficient photocatalytic degradation of organic pollutants[J]. Applied Physics Letters, 2009, 95(1): 829. |
13 | KadamS, MateV R, PanmandR, et al. A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light[J]. RSC Advances, 2014, 4(105): 60626-60635. |
14 | SpeltiniA, SturiniM, DondiD, et al. Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study[J]. Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association & the European Society for Photobiology, 2014, 13(10): 1410. |
15 | 董庆华. 半导体光催化[J]. 影像科学与光化学, 1993, (2): 78-83. |
DongQ H. Semiconductor photocatalysis[J]. Photographic Science and Photochemistry, 1993, (2): 78-83. | |
16 | CurcóD, GiménezJ, AddardakA, et al. Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants[J]. Catalysis Today, 2002, 76(2): 177-188. |
17 | HeydukA F, NoceraD G. Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst[J]. Science, 2001, 293(5535): 1639-1641. |
18 | KatoH, AsakuraK, KudoA. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. Journal of the American Chemical Society, 2003, 125(10): 3082-3089. |
19 | SakataT, KawaiT. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process[J]. Nature, 1980, 286: 474-476. |
20 | SakataT, KawaiT. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water[J]. Chemical Physics Letters, 1981, 80(2): 341-344. |
21 | SakataT, KawaiT, HashimotoK. Heterogeneous photocatalytic reactions of organic acids and water. New reaction paths besides the photo-Kolbe reaction[J]. Journal of Physical Chemistry, 1984, 88(11): 2344-2350. |
22 | KawaiT, SakataT. Hydrogen evolution from water using solid carbon and light energy[J]. Nature, 1979, 282(5736): 283-284. |
23 | YoshidaH, HiraoK, NishimotoJ I, et al. Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts[J]. The Journal of Physical Chemistry C, 2008, 112(14): 5542-5551. |
24 | KawaiT, SakataT. Photodecomposition of water by using organic compounds[J]. Chem. Jpn., 1981, 39: 589–602. |
25 | 刘芳, 樊丰涛, 吕玉翠, 等. 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报, 2016, 67(5): 1635-1643. |
LiuF, FanF T, LyuY C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. CIESC Journal, 2016, 67(5): 1635-1643. | |
26 | 孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756. |
SunY, YuL L, HuangH B, et al. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5): 1743-1756. | |
27 | ZhangG, NiC, HuangX, et al. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis[J]. Chemical Communications, 2016, 52(8): 1673-1676. |
28 | WakerleyD W, KuehnelM F, OrchardK L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nature Energy, 2017, 2(4): 17021. |
29 | YangJ C, KimY C, ShulY G, et al. Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts[J]. Applied Surface Science, 1997, 121(1): 525-529. |
30 | HuF, JungS, RagauskasA. Pseudo-lignin formation and its impact on enzymatic hydrolysis[J]. Bioresource Technology, 2012, 117(4): 7-12. |
31 | 张浩, 朱庆明. 工业废水处理中纳米TiO2光催化技术的应用[J]. 工业水处理, 2011, 31(5): 17-20. |
ZhangH, ZhuQ M. Applications of nano-TiO2 photocatalytic technology to the treatment of industrial wastewater[J]. Industrial Water Treatment, 2011, 31(5): 17-20. | |
32 | PingW, LiuJ, LiZ. Effect of Pt loading and calcination temperature on the photocatalytic hydrogen production activity of TiO2 microspheres[J]. Ceramics International, 2013, 39(5): 5387-5391. |
33 | AntonyR P, MathewsT, RameshC, et al. Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8268-8276. |
34 | 唐玉朝, 李薇, 胡春. TiO2形态结构与光催化活性关系的研究[J]. 化学进展, 2003, 15(5): 379-384. |
TangY C, LiW, HuC. Studies on morphological structure and photoactivity of TiO2 heterogeneous photocatalysts[J]. Progress in Chemistry, 2003, 15(5): 379-384. | |
35 | PugaA V. Photocatalytic production of hydrogen from biomass-derived feedstocks[J]. Coordination Chemistry Reviews, 2016, 315: 1-66. |
36 | MalatoS, MaldonadoM I, Fernández-IbáñezP, et al. Decontamination and disinfection of water by solar photocatalysis: the pilot plants of the Plataforma Solar de Almeria[J]. Materials Science in Semiconductor Processing, 2016, 42(1): 15-23. |
37 | 吴树新, 尹燕华, 何菲, 等. 掺铜TiO2光催化剂光催化氧化还原性能的研究[J]. 感光科学与光化学, 2005, 23(5): 333-335. |
WuS X, YinY H, HeF, et al. Photocatalytic redox performance of copper doped TiO2 photocatalyst[J]. Photographic Science and Photochemistry, 2005, 23(5): 333-335. | |
38 | 李梓木. 可抽提物对玉米秸秆水热预处理效果的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LiZ M. Study on influences of extractives on hydrothermal pretreatment of corn stover[D]. Harbin: Harbin Institute of Technology, 2016. | |
39 | LiaoG, ChenS, QuanX, et al. Remarkable improvement of visible light photocatalysis with PANI modified core-shell mesoporous TiO2 microspheres[J]. Applied Catalysis B Environmental, 2011, 102(1/2): 126-131. |
40 | FahmaF, IwamotoS, HoriN, et al. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB)[J]. Cellulose, 2010, 17(5): 977-985. |
41 | XiaoB, SunX F, SunR C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw[J]. Polymer Degradation & Stability, 2001, 74(2): 307-319. |
42 | SainM, PanthapulakkalS. Bioprocess preparation of wheat straw fibers and their characterization[J]. Industrial Crops & Products, 2006, 23(1): 1-8. |
43 | 廖艳芬, 王树荣, 骆仲泱, 等. 纤维素热裂解过程动力学的试验分析研究[J]. 浙江大学学报(工学版), 2002, 36(2): 172-176. |
LiaoY F, WangS R, LuoZ Y, et al. Research on cellulose pyrolysis kinetics[J]. Journal of Zhejiang University ( Engineering Science), 2002, 36(2): 172-176. | |
44 | YaoF, WuQ, LeiY, et al. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis[J]. Polymer Degradation and Stability, 2008, 93(1): 90-98. |
45 | LvG, WuS, YangG, et al. Comparative study of pyrolysis behaviors of corn stalk and its three components[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 185-193. |
46 | ChangG Y, WangC, YuC, et al. Improved enzymatic hydrolysis of corn stover by photonanocatalyst-aided (MSPNA) ammonia pretreatment[C]//AIChE Meeting. 2011. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[10] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[13] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||