CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 2938-2945.DOI: 10.11949/0438-1157.20190182
Previous Articles Next Articles
Dongliang CHEN1(),Zhonglin ZHANG1,Jingxuan YANG1,Xuli MA1,Peng LI2,Xiaogang HAO1(),Guoqing GUAN3
Received:
2019-03-04
Revised:
2019-04-30
Online:
2019-08-05
Published:
2019-08-05
Contact:
Xiaogang HAO
陈东良1(),张忠林1,杨景轩1,马旭莉1,李鹏2,郝晓刚1(),官国清3
通讯作者:
郝晓刚
作者简介:
陈东良(1993—),男,硕士研究生,基金资助:
CLC Number:
Dongliang CHEN, Zhonglin ZHANG, Jingxuan YANG, Xuli MA, Peng LI, Xiaogang HAO, Guoqing GUAN. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945.
陈东良, 张忠林, 杨景轩, 马旭莉, 李鹏, 郝晓刚, 官国清. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945.
Add to citation manager EndNote|Ris|BibTeX
Temperature/K | Pressure/kPa | Composition(φ)/% | |||
---|---|---|---|---|---|
CO2 | N2 | O2 | H2O | ||
318.2 | 121.59 | 18.41 | 75.28 | 4.71 | 1.60 |
Table 1 Flue gas parameters for CO2 capture system
Temperature/K | Pressure/kPa | Composition(φ)/% | |||
---|---|---|---|---|---|
CO2 | N2 | O2 | H2O | ||
318.2 | 121.59 | 18.41 | 75.28 | 4.71 | 1.60 |
Capture process | Energy consumption/(GJ/(t CO2)) | Investment/(CNY/(t CO2)) | Operating/( CNY/(t CO2)) | Total cost/( CNY/(t CO2)) |
---|---|---|---|---|
traditional chemical method | 2.49 | 22.15 | 349.10 | 371.25 |
self-heat recuperative | 1.46 | 28.30 | 298.40 | 326.70 |
Table 2 Analysis results of system energy consumption and economy
Capture process | Energy consumption/(GJ/(t CO2)) | Investment/(CNY/(t CO2)) | Operating/( CNY/(t CO2)) | Total cost/( CNY/(t CO2)) |
---|---|---|---|---|
traditional chemical method | 2.49 | 22.15 | 349.10 | 371.25 |
self-heat recuperative | 1.46 | 28.30 | 298.40 | 326.70 |
1 | Dai S P . BP statistical review of world energy[EB/OL]. [2018-06]. . |
2 | 岑可法 . 煤炭高效清洁低碳利用研究进展[J]. 科技导报, 2018, 36(10): 66-74. |
Cen K F . Research progress and outlook for efficient clean and low-carbon coal utilization[J]. Technology Review, 2018, 36(10): 66-74. | |
3 | Tsutsumi A , Guan G Q , Fushimi C , et al . Flow behaviors in a high solid flux circulating fluidized bed composed of a riser, a downer and abubbling fluidized bed[C]//Fluidization XIII: New Paradigm in Fluidization Engineering. Hotel Hyundai, Korea, 2010: 407-414 |
4 | Zhang X F , Dong L , Zhang J W , et al . Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. Journal of Analytical & Applied Pyrolysis, 2011, 91(1): 241-250. |
5 | Zhang Y M , Wang Y , Cai L G , et al . Dual bed pyrolysis gasification of coal: process analysis and pilot test[J]. Fuel, 2013, 112(112): 624-634 |
6 | 王亚雄, 杨景轩, 张忠林, 等 . 低阶煤热解-气化-燃烧TBCFB系统模拟及优化[J]. 化工学报, 2018, 69(8): 3596-3604. |
Wang Y X , Yang J X , Zhang Z L , et al . Simulation and optimization of low rank coal pyrolysis-gasification-combustion TBCFB system[J]. CIESC Journal, 2018, 69(8): 3596-3604. | |
7 | 张克舫 . 醇胺吸收法燃煤电厂CO2捕集系统能量分析及优化[D]. 北京: 北京工业大学, 2015. |
Zhang K F . Energy analysis and optimization of MEA-absorption CO2 capture systems for coal-fired power plants[D]. Beijing: Beijing University of Technology, 2015. | |
8 | Macdowell N , Florin N , Buchard A , et al . An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645-1669. |
9 | Yan S P , Fang M X , Wang J L , et al . An analysis of regeneration energy consumption in absorption and dissociation processes of flue gas CO2 and its simulation[J]. Journal of Power Engineering, 2007, 6(3): 1-6. |
10 | Bates E D , Mayton R D , Ioanna N A , et al . CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-7. |
11 | 杨磊, 于宏兵, 王胜强, 等 . CaO/FA吸收剂高温吸收CO2及穿透特性[J]. 化工学报, 2012, 63(2): 606-611. |
Yang L , Yu H B , Wang S Q , et al . High temperature absorption of CO2 and breakthrough characteristics of CaO/FA sorbents[J]. CIESC Journal, 2012, 63(2): 606-611. | |
12 | 王田军, 李军, 崔凤霞, 等 . 二氧化碳捕集低温吸附剂研究进展[J]. 精细石油化工, 2015, 32(4): 70-76. |
Wang T J , Li J , Cui F X , et al . Research progress of adsorbents for CO2 capture at low temperature[J]. Speciality Petrochemicals, 2015, 32(4): 70-76. | |
13 | Xue C F , Zhu H Y , Du X , et al . Unique allosteric effect-driven rapid adsorption of carbon dioxide in a newly designed ionogel [P4444][2-Op]@MCM-41 with excellent cyclic stability and loading-dependent capacity[J]. Journal of Materials Chemistry A, 2017, 5(14): 6504-6514. |
14 | 邱泽正, 龚宇烈, 马伟斌, 等 . 国内外吸收压缩式热泵研究进展[J]. 化工进展, 2011, 30(2): 264-268. |
Qiu Z Z , Gong Y L , Ma W B , et al . Worldwide development of ACHP[J]. Chemical Industry and Engineering Progress, 2011, 30(2): 264-268. | |
15 | 周鹏飞, 张振涛, 章学来, 等 . 热泵干燥过程中低温热泵补热的应用分析[J]. 化工学报, 2018, 69(5): 2032-2039. |
Zhou P F , Zhang Z T , Zhang X L , et al . Application analysis of low temperature heat pump heating during heat pump drying[J]. CIESC Journal, 2018, 69(5): 2032-2039. | |
16 | 骆永国 . 基于热泵技术的MEA法CO2捕集系统模拟分析[D]. 青岛: 山东科技大学, 2011. |
Luo Y G . Simulation analysis on CO2 capture by MEA method based on heat pump technology[D]. Qingdao: Shandong University of Science and Technology, 2011. | |
17 | 李青, 余云松, 姜钧, 等 . 基于热泵技术的化学吸收法二氧化碳捕集系统[J]. 高校化学工程学报, 2010, 24(1): 29-34. |
Li Q , Yu Y S , Jiang J , et al . CO2 capture by chemical absorption method based on heat pump technology[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(1): 29-34. | |
18 | 陈昱珍 . 自热再生技术在原油蒸馏装置中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Chen Y Z . The application of self-heat recuperation technology in crude oil distillation units[D]. Harbin: Harbin Institute of Technology, 2015. | |
19 | Kuchonthara P , Tsutsumi A . Energy-recuperative coal-integrated gasification/gas turbine power generation system[J]. Journal of Chemical Engineering of Japan, 2006, 39(5): 545-52. |
20 | Kansha Y , Tsuru N , Sato K , et al . Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686. |
21 | Kansha Y , Tsuru N , Fushimi C , et al . Integrated process module for distillation processes based on self-heat recuperation technology[J]. Journal of Chemical Engineering of Japan, 2010, 43(4): 502-507. |
22 | Wu J , Guo Z Y . Application of entransy analysis in self-heat recuperation technology[J]. Industrial & Engineering Chemistry Research, 2014, 53(3): 1274-1285. |
23 | Han D , He W , Yue C , et al . Analysis of energy saving for ammonium sulfate solution processing with self-heat recuperation principle[J]. Applied Thermal Engineering, 2014, 73(1): 641-649. |
24 | Kishimoto A , Kansha Y , Fushimi C , et al . Exergy recuperative CO2 gas separation in post-combustion capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 10128-10135. |
25 | Tsutsumi A , Kansha Y . Thermodynamic mechanism of self-heat recuperative and self-heat recovery heat circulation system for a continuous heating and cooling gas cycle process[J]. Chemical Engineering Transactions, 2017, 61: 1759-1764. |
26 | Hasan M M F , Baliban R C , Elia J A , et al . Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate(1):Chemical absorption and membrane processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(48): 15642-15664. |
27 | 王亚雄 . 低阶煤热解-气化-燃烧TBCFB系统及尾气中CO2捕集的模拟与优化[D]. 太原: 太原理工大学, 2018. |
Wang Y X . Simulation and optimization of TBCFB system for pyrolysis-gasification-combustion of low rank coal and CO2 capture system[D].Taiyuan: Taiyuan University of Technology, 2018. | |
28 | 张晓娟, 王峰, 李磊, 等 . 电厂烟道气CO2变温吸附捕集工艺设计及经济评价[J]. 石油化工, 2018, 47(4): 368-373. |
Zhang X J , Wang F , Li L , et al . Design and economic evaluation of temperature swing adsorption process for CO2 capture from power plant flue gas[J]. Petrochemical Technology, 2018, 47(4): 368-373. | |
29 | 张早校, 余云松, 李云, 等 . 化学吸收法捕集二氧化碳性能改进探讨[C]// 中国工程院/国家能源局能源论坛. 2010. |
Zhang Z X , Yu Y S , Li Y , et al . Investigation on performance improvement for CO2 capture by chemical absorption[C]// China Academy of Engineering/ National Energy Administration Energy Forum. 2010. | |
30 | 迟金玲 . IGCC电站二氧化碳捕集研究[D]. 北京: 中国科学院研究生院, 2011. |
Chi J L . Research on CO2 capture of IGCC power plants[D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2011. | |
31 | 胥蕊娜, 陈文颖, 吴宗鑫 . 电厂中CO2捕集技术的成本及效率[J]. 清华大学学报(自然科学版), 2009, (9): 1542-1545. |
Xu R N , Chen W Y , Wu Z X . Cost and performance of power plants with CO2 capture[J]. J. Tsinghua Univ. ( Sci .& Tech.), 2009 , (9): 1542-1545. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[6] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[8] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[9] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[10] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[11] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[12] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[13] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[14] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[15] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||