CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 3167-3176.DOI: 10.11949/0438-1157.20190192

Previous Articles     Next Articles

Three-dimensional full-loop simulation of biomass gasification in dual fluidized bed

Dali KONG1(),Kun LUO1(),Junjie LIN1,Shuai WANG1,Chenshu HU1,Debo LI2,Jianren FAN1   

  1. 1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2. Guangdong Diankeyuan Energy Technology Co. , Ltd. , Guangzhou 510080, Guangdong, China
  • Received:2019-03-05 Revised:2019-05-08 Online:2019-08-05 Published:2019-08-05
  • Contact: Kun LUO

双流化床生物质气化的三维全循环数值模拟

孔大力1(),罗坤1(),林俊杰1,王帅1,胡陈枢1,李德波2,樊建人1   

  1. 1. 浙江大学能源清洁利用国家重点实验室,浙江 杭州 310027
    2. 广东电科院能源技术有限责任公司,广东 广州 510080
  • 通讯作者: 罗坤
  • 作者简介:孔大力(1995—),男,硕士研究生,<email>21827053@zju.edu.cn</email>

Abstract:

A three-dimensional full-loop simulation of biomass gasification in an industry-scale dual fluidized bed is conducted based on the MP-PIC (multi-phase particle-in-cell) method. In this method, the parcel motion is descript under Lagrangian framework while the gas turbulence is solved by large-eddy simulation (LES), meanwhile, the complex gas-solid interaction, pyrolysis, gasification and homogeneous/heterogeneous reactions are considered simultaneously. Firstly, the independence of grids and particles per parcel (PPP) is conducted, and the numerical results agree well with the experimental data. Secondly, the gas-solid flow characteristics and syngas distributions in dual fluidized bed are revealed and the effects of bed temperature, biomass particle number and drag force correlation on syngas production are analyzed. The results show that the temperature increases, the CO mole fraction at the outlet increases, and the remaining components decrease; the gasification effect of the smaller biomass particle size is better than the larger biomass particle size. The drag model has a negligible effect on the syngas production.

Key words: MP-PIC, dual fluidized bed, biomass gasification, numerical simulation

摘要:

基于多相质点网格方法(multi-phase particle-in-cell,MP-PIC)对工业尺度的双流化床生物质气化过程进行了三维全循环数值模拟。其中,在拉格朗日框架下求解颗粒团运动,采用大涡模拟法(large-eddy simulation, LES)求解气相湍流,同时考虑复杂的气固耦合以及生物质的热解、气化、均相/异相反应。首先,通过独立性检验确定了计算所需的最佳网格数与计算颗粒数,且模拟结果和实验结果对比良好。其次,揭示了流化床内生物质气化过程中的气固流动特性及气体组分分布规律,研究了床内温度、生物质粒径、曳力模型等因素对产物气体组分分布的影响。结果表明:温度升高,出口处的CO摩尔分数增加,而其余组分都减小;较小生物质粒径的气化效果要优于较大的生物质颗粒粒径;曳力模型对各产物气体组分的摩尔分数几乎无影响。

关键词: MP-PIC, 双流化床, 生物质气化, 数值模拟

CLC Number: