CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 3104-3112.DOI: 10.11949/0438-1157.20190325
Previous Articles Next Articles
Zhenfei MEI(),Ming CHEN,Dezhen CHEN(),Liu HONG,Yuyan HU
Received:
2019-04-01
Revised:
2019-05-09
Online:
2019-08-05
Published:
2019-08-05
Contact:
Dezhen CHEN
通讯作者:
陈德珍
作者简介:
梅振飞(1994—),男,硕士研究生,<email>1732686@tongji.edu.cn</email>
基金资助:
CLC Number:
Zhenfei MEI, Ming CHEN, Dezhen CHEN, Liu HONG, Yuyan HU. Product oriented catalyst choice during MSW pyrolysis and volatile reforming process[J]. CIESC Journal, 2019, 70(8): 3104-3112.
梅振飞, 陈明, 陈德珍, 洪鎏, 胡雨燕. 垃圾热解-挥发分重整过程中基于产物导向的催化剂选择[J]. 化工学报, 2019, 70(8): 3104-3112.
Add to citation manager EndNote|Ris|BibTeX
Composition/%(mass) | HHV/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Kitchen wastes | Paper | Cloth and fiber | Plastics | Wood | Residue | |||
15.38±0.80 | 5.79±0.16 | 27.24±0.69 | 21.85±9.57 | 3.24±0.40 | 26.47±0.98 | 17.44±0.18 | ||
Ultimate analysis①/%(mass) | Proximate analysis/%(mass) | |||||||
C | H | N | O② | S | M | A | V | FC |
43.17 ±1.78 | 6.03 ±0.47 | 2.52 ±0.17 | 48.06 ±0.68 | 0.22 ±0.01 | 6.52 ±0.28 | 26.02 ±0.88 | 60.65 ±1.11 | 6.81 ±0.04 |
Table 1 Components and elemental analysis of MSW sample (air dry basis)
Composition/%(mass) | HHV/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Kitchen wastes | Paper | Cloth and fiber | Plastics | Wood | Residue | |||
15.38±0.80 | 5.79±0.16 | 27.24±0.69 | 21.85±9.57 | 3.24±0.40 | 26.47±0.98 | 17.44±0.18 | ||
Ultimate analysis①/%(mass) | Proximate analysis/%(mass) | |||||||
C | H | N | O② | S | M | A | V | FC |
43.17 ±1.78 | 6.03 ±0.47 | 2.52 ±0.17 | 48.06 ±0.68 | 0.22 ±0.01 | 6.52 ±0.28 | 26.02 ±0.88 | 60.65 ±1.11 | 6.81 ±0.04 |
Catalyst | CaO | SiO2 | Fe2O3 | K2O | Al2O3 | P2O5 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|
MSW char | 26.80 | 14.70 | 10.10 | 4.49 | 3.92 | 3.77 | 1.78 | 1.47 | 0.77 |
dolomite | 53.20 | 0.47 | 0.36 | 0.02 | 0.08 | — | 36.97 | — | — |
ASSC | 3.93 | 13.5 | 11.5 | 44.1 | 5.38 | 6.85 | 0.76 | 0.64 | 0.75 |
Table 2 Chemical composition of catalysts/%(mass)
Catalyst | CaO | SiO2 | Fe2O3 | K2O | Al2O3 | P2O5 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|
MSW char | 26.80 | 14.70 | 10.10 | 4.49 | 3.92 | 3.77 | 1.78 | 1.47 | 0.77 |
dolomite | 53.20 | 0.47 | 0.36 | 0.02 | 0.08 | — | 36.97 | — | — |
ASSC | 3.93 | 13.5 | 11.5 | 44.1 | 5.38 | 6.85 | 0.76 | 0.64 | 0.75 |
Catalyst | Pile density/ (g/cm3) | BET surface area/ (cm2/g) | Total pore volume/ (cm3/g) | Average pore diameter/mm |
---|---|---|---|---|
MSW char | 0.50 | 21.70 | 0.030 | 5.52 |
dolomite | 1.40 | 6.88 | 0.033 | 19.88 |
ASSC | 0.46 | 178.53 | 0.234 | 5.25 |
Table 3 Pile density and pore structure of catalyst
Catalyst | Pile density/ (g/cm3) | BET surface area/ (cm2/g) | Total pore volume/ (cm3/g) | Average pore diameter/mm |
---|---|---|---|---|
MSW char | 0.50 | 21.70 | 0.030 | 5.52 |
dolomite | 1.40 | 6.88 | 0.033 | 19.88 |
ASSC | 0.46 | 178.53 | 0.234 | 5.25 |
Reaction | ΔH 298K | Number |
---|---|---|
C+H2O?CO+H2 | +131 MJ/kmol | R1 |
CO+H2O?CO2+H2 | -41 MJ/kmol | R2 |
C n H m +pH2O?C n - p H y +pCO+(p+(m-y)/2)H2 | >0 | R3 |
C+CO2 ?2CO | +172 MJ/kmol | R4 |
C n H m +nCO2 ?2nCO+(m/2)H2 | >0 | R5 |
CO+3H2 ?CH4+H2O | -227 MJ/kmol | R6 |
C n H2 n +2 ? nC+(n+1)H2 | >0 | R7 |
CaO+H2O?Ca(OH)2 | -65 MJ/kmol | R8 |
Ca(OH)2+CO2 ?CaCO3+H2O | -113 MJ/kmol | R9 |
Table 4 Main reactions during reforming process
Reaction | ΔH 298K | Number |
---|---|---|
C+H2O?CO+H2 | +131 MJ/kmol | R1 |
CO+H2O?CO2+H2 | -41 MJ/kmol | R2 |
C n H m +pH2O?C n - p H y +pCO+(p+(m-y)/2)H2 | >0 | R3 |
C+CO2 ?2CO | +172 MJ/kmol | R4 |
C n H m +nCO2 ?2nCO+(m/2)H2 | >0 | R5 |
CO+3H2 ?CH4+H2O | -227 MJ/kmol | R6 |
C n H2 n +2 ? nC+(n+1)H2 | >0 | R7 |
CaO+H2O?Ca(OH)2 | -65 MJ/kmol | R8 |
Ca(OH)2+CO2 ?CaCO3+H2O | -113 MJ/kmol | R9 |
实验工况 | 干气产率/ (m3/(kg MSW)) | HHV/(MJ/m3) | 气体能量/ (MJ/(kg MSW)) |
---|---|---|---|
S1 | 0.21 | 14.02 | 2.94 |
S2 | 0.39 | 18.07 | 7.05 |
S3 | 0.41 | 18.01 | 7.38 |
S4 | 0.45 | 18.93 | 8.52 |
S5 | 0.46 | 18.87 | 8.68 |
S6 | 0.47 | 18.60 | 8.74 |
S7 | 0.45 | 18.80 | 8.46 |
S8 | 0.47 | 18.57 | 8.73 |
S9 | 0.50 | 17.15 | 8.58 |
S10 | 0.52 | 16.98 | 8.83 |
S11 | 0.47 | 18.79 | 8.83 |
Table 5 Dry gas yield and higher heat value of gas products
实验工况 | 干气产率/ (m3/(kg MSW)) | HHV/(MJ/m3) | 气体能量/ (MJ/(kg MSW)) |
---|---|---|---|
S1 | 0.21 | 14.02 | 2.94 |
S2 | 0.39 | 18.07 | 7.05 |
S3 | 0.41 | 18.01 | 7.38 |
S4 | 0.45 | 18.93 | 8.52 |
S5 | 0.46 | 18.87 | 8.68 |
S6 | 0.47 | 18.60 | 8.74 |
S7 | 0.45 | 18.80 | 8.46 |
S8 | 0.47 | 18.57 | 8.73 |
S9 | 0.50 | 17.15 | 8.58 |
S10 | 0.52 | 16.98 | 8.83 |
S11 | 0.47 | 18.79 | 8.83 |
1 | 中国环境保护产业协会城市生活垃圾处理专业委员会 . 城市生活垃圾处理行业2017年发展综述 [J]. 中国环保产业, 2017, (4): 9-15. |
China Environmental Protection Industry Association, Municipal Solid Waste Disposal Professional Committee . Overview of the development of municipal solid waste disposal industry in 2017 [J]. China Environmental Protection Industry, 2017, (4): 9-15. | |
2 | Chen D , Yin L , Wang H , et al . Reprint of: pyrolysis technologies for municipal solid waste: a review [J]. Waste Manag., 2015, 37: 116-136. |
3 | Arena U . Process and technological aspects of municipal solid waste gasification. A review [J]. Waste Manag., 2012, 32(4): 625-639. |
4 | Zhang Q , Chang J , Wang T , et al . Review of biomass pyrolysis oil properties and upgrading research [J]. Energy Conversion and Management, 2007, 48(1): 87-92. |
5 | Xie Y R , Shen L H , Xiao J , et al . Influences of additives on steam gasification of biomass (1): Pyrolysis procedure [J]. Energy & Fuels, 2009, 23(10): 5199-5205. |
6 | Azuara M , Fonts I , Bimbela F , et al . Catalytic post-treatment of the vapors from sewage sludge pyrolysis by means of γ-Al2O3: effect on the liquid product properties [J]. Fuel Processing Technology, 2015, 130: 252-262. |
7 | Huang Q , Lu P , Hu B , et al . Cracking of model tar species from the gasification of municipal solid waste using commercial and waste-derived catalysts [J]. Energy & Fuels, 2016, 30(7): 5740-5748. |
8 | Wang N , Chen D , Arena U , et al . Hot char-catalytic reforming of volatiles from MSW pyrolysis [J]. Applied Energy, 2017, 191: 111-124. |
9 | He M , Xiao B , Liu S , et al . Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts [J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 181-187. |
10 | Virginie M , Adánez J , Courson C , et al . Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed [J]. Applied Catalysis B: Environmental, 2012, 121/122: 214-222. |
11 | Cao J P , Shi P , Zhao X Y , et al . Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst [J]. Fuel Processing Technology, 2014, 123: 34-40. |
12 | Shen Y , Yoshikawa K . Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review [J]. Renewable and Sustainable Energy Reviews, 2013, 21: 371-392. |
13 | Devi L , Ptasinski K J , Janssen F J J G . A review of the primary measures for tar elimination in biomass gasification processes [J]. Biomass & Bioenergy, 2003, 24(2): 125-140. |
14 | Whyte H E , Loubar K , Awad S , et al . Pyrolytic oil production by catalytic pyrolysis of refuse-derived fuels: investigation of low cost catalysts [J]. Fuel Processing Technology, 2015, 140: 32-38. |
15 | Yu G , Chen D , Arena U , et al . Reforming sewage sludge pyrolysis volatile with Fe-embedded char: minimization of liquid product yield [J]. Waste Manag., 2018, 73: 464-475. |
16 | Gong W , Yin X L , Xie J J , et al . Kinetic study of tar catalytic cracking over porous granular dolomite catalyst [J]. Acta Energiae Solaris Sinica, 2010, 31(7): 800-805. |
17 | Berrueco C , Montané D , Matas Güell B , et al . Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed [J]. Energy, 2014, 66: 849-859. |
18 | Orío A , José Corella A , Narváez I . Performance of different dolomites on hot raw gas cleaning from biomass gasification with air [J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3800-3808. |
19 | He M , Hu Z , Xiao B , et al . Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): influence of catalyst and temperature on yield and product composition [J]. International Journal of Hydrogen Energy, 2009, 34(1): 195-203. |
20 | Liu S , Wang Y , Wu R , et al . Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal [J]. Energy & Fuels, 2013, 28(1): 58-66. |
21 | Gilbert P , Ryu C , Sharifi V , et al . Tar reduction in pyrolysis vapours from biomass over a hot char bed [J]. Bioresour. Technol., 2009, 100(23): 6045-6051. |
22 | Klinghoffer N B , Castaldi M J , Nzihou A . Influence of char composition and inorganics on catalytic activity of char from biomass gasification [J]. Fuel, 2015, 157: 37-47. |
23 | Feng D , Zhao Y , Zhang Y , et al . Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2 [J]. Chemical Engineering Journal, 2016, 306: 422-432. |
24 | Min Z , Yimsiri P , Asadullah M , et al . Catalytic reforming of tar during gasification (Ⅱ): Char as a catalyst or as a catalyst support for tar reforming [J]. Fuel, 2011, 90(7): 2545-2552. |
25 | Sun Q , Yu S , Wang F , et al . Decomposition and gasification of pyrolysis volatiles from pine wood through a bed of hot char [J]. Fuel, 2011, 90(3): 1041-1048. |
26 | Abu El-Rub Z , Bramer E A , Brem G . Experimental comparison of biomass chars with other catalysts for tar reduction [J]. Fuel, 2008, 87(10/11): 2243-2252. |
27 | Meesuk S , Cao J P , Sato K , et al . Study of catalytic hydropyrolysis of rice husk under nickel-loaded brown coal char [J]. Energy & Fuels, 2011, 25(11): 5438-5443. |
28 | Fisk C A , Morgan T , Ji Y , et al . Bio-oil upgrading over platinum catalysts using in situ generated hydrogen [J]. Applied Catalysis A: General, 2009, 358(2): 150-156. |
29 | Park E S , Kang B S , Kim J S . Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants [J]. Energy & Fuels, 2008, 22(2): 1335-1340. |
30 | Rodriguez I D M , Laresgoiti M F , Cabrero M A , et al . Pyrolysis of scrap tyres [J]. Fuel Processing Technology, 2001, 72(1): 9-22. |
31 | Maher K D , Bressler D C . Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals [J]. Bioresour. Technol., 2007, 98(12): 2351-2368. |
32 | Yip K , Tian F , Hayashi J I , et al . Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy & Fuels, 2010, 24(1): 173-181. |
[1] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[6] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[7] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[8] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[9] | Zhenbao LI, Chao LI, Hu WANG, Shaorui WANG, Quan LI. The microscopic mechanism on MPP inhibiting explosion of Al-Mg alloy powder [J]. CIESC Journal, 2023, 74(8): 3608-3614. |
[10] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[13] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[14] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[15] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||