1 |
张剑波, 黄福森, 黄俊, 等. 质子交换膜燃料电池零下冷启动研究进展[J]. 化学通报, 2017, 80(6): 507-516.
|
|
ZhangJ B, HuangF S, HuangJ, et al. A review on subzero startup of proton exchange membrane fuel cell[J]. Chemistry, 2017, 80(6): 507-516.
|
2 |
MengH. Numerical analyses of non-isothermal self-start behaviors of PEM fuel cells from subfreezing startup temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(20): 5738-5747.
|
3 |
KoJ, JuH. Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells[J]. Applied Energy, 2012, 94: 364-374.
|
4 |
LuoY, JiaoK, JiaB. Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2014, 77: 489-500.
|
5 |
TabeY, SaitoM, FukuiK, et al. Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2012, 208: 366-373.
|
6 |
GeS, WangC Y. Characteristics of subzero startup and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell[J]. Electrochimica Acta, 2007, 52(14): 4825-4835.
|
7 |
BégotS, HarelF, KauffmannJ M. Experimental studies on the influence of operational parameters on the cold start of a 2 kW fuel cell[J]. Fuel Cells, 2008, 8(2): 138-150.
|
8 |
SchießwohlE, von UnwerthT, SeyfriedF, et al. Experimental investigation of parameters influencing the freeze start ability of a fuel cell system[J]. Journal of Power Sources, 2009, 193(1): 107-115.
|
9 |
罗马吉, 王芳芳, 刘威, 等. 质子交换膜燃料电池冷启动及性能衰减研究[J]. 华中科技大学学报(自然科学版), 2011, 39(6): 116-120.
|
|
LuoM J, WangF F, LiuW, et al. Research on PEMFC start-up at subzero temperature and performance decay[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2011, 39(6): 116-120.
|
10 |
KoJ, KimW, HongT, et al. Impact of metallic bipolar plates on cold-start behaviors of polymer electrolyte fuel cells (PEFCs)[J]. Solid State Ionics, 2012, 225: 260-267.
|
11 |
KhandelwalM, LeeS, MenchM M. One-dimensional thermal model of cold-start in a polymer electrolyte fuel cell stack[J]. Journal of Power Sources, 2007, 172(2): 816-830.
|
12 |
李友才, 许思传, 杨宗田. 不同参数对PEMFC电堆低温起动影响的仿真研究[J]. 电源技术, 2014, 38(9): 1657-1659.
|
|
LiY C, XuS C, YangZ T. Simulation study on cold start of proton exchange membrane fuel cell stack[J]. Chinese Journal of Power Sources, 2014, 38(9): 1657-1659.
|
13 |
KonnoN, MizunoS, NakajiH, et al. Development of compact and high-performance fuel cell stack[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 123-129.
|
14 |
JiangF, WangC Y. Potentiostatic start-up of PEMFCs from subzero temperatures[J]. Journal of the Electrochemical Society, 2008, 155(7): B743.
|
15 |
JiangF, WangC Y, ChenK S. Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment[J]. Journal of the Electrochemical Society, 2010, 157(3): B342.
|
16 |
DuQ, JiaB, LuoY, et al. Maximum power cold start mode of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8390-8400.
|
17 |
张洁, 许思传, 郑浩, 等. 基于AMESim的燃料电池系统低温起动仿真[J]. 电源技术, 2015, 39(2): 298-301.
|
|
ZhangJ, XuS C, ZhengH, et al. Simulation of cold start of fuel cell system based on AMESim[J]. Chinese Journal of Power Sources, 2015, 39(2): 298-301.
|
18 |
GwakG, JuH. A rapid start-up strategy for polymer electrolyte fuel cells at subzero temperatures based on control of the operating current density[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11989-11997.
|
19 |
JiangF, FangW, WangC Y. Non-isothermal cold start of polymer electrolyte fuel cells[J]. Electrochimica Acta, 2007, 53(2): 610-621.
|
20 |
汪飞杰. 燃料电池发动机-20℃冷启动研究[J]. 上海汽车, 2017, (8): 3-6.
|
|
WangF J. -20℃ cold start research for fuel cell engine[J]. Shanghai Auto, 2017, (8): 3-6.
|