CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 76-84.DOI: 10.11949/0438-1157.20190493
• Thermodynamics • Previous Articles Next Articles
Dexin HOU(),Yue CHEN,Shuliang YE()
Received:
2019-05-09
Revised:
2019-07-11
Online:
2019-09-06
Published:
2019-09-06
Contact:
Shuliang YE
通讯作者:
叶树亮
作者简介:
侯德鑫(1983—),男,硕士,实验师,基金资助:
CLC Number:
Dexin HOU,Yue CHEN,Shuliang YE. Measurement of in-plane thermal conductivity of glued graphite film based on thermal imaging[J]. CIESC Journal, 2019, 70(S2): 76-84.
侯德鑫,陈玥,叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
Add to citation manager EndNote|Ris|BibTeX
薄层材料 | 密度/ (kg·m-3) | 比热容/ (J·kg-1·K-1) | 面向热导率/ (W·m-1·K-1) | 纵向热导率/ (W·m-1·K-1) | 厚度/μm |
---|---|---|---|---|---|
绝缘层 | 1200 | 2000 | 0.25 | 0.25 | 15 |
石墨层 | 1900 | 850 | 1500 | 10 | 25 |
胶层 | 800 | 2000 | 1 | 1 | 20 |
Table 1 Structure and material parameters of glued graphite film
薄层材料 | 密度/ (kg·m-3) | 比热容/ (J·kg-1·K-1) | 面向热导率/ (W·m-1·K-1) | 纵向热导率/ (W·m-1·K-1) | 厚度/μm |
---|---|---|---|---|---|
绝缘层 | 1200 | 2000 | 0.25 | 0.25 | 15 |
石墨层 | 1900 | 850 | 1500 | 10 | 25 |
胶层 | 800 | 2000 | 1 | 1 | 20 |
模型 | 密度/(kg·m-3) | 比热容/(J·kg-1·K-1) | 面向热导率/(W·m-1·K-1) | 纵向热导率/(W·m-1·K-1) | 厚度/μm |
---|---|---|---|---|---|
稳态等效 | 1358 | 1330 | 625 | 0.73 | 60 |
Table 2 Equivalent single homogeneous material parameters
模型 | 密度/(kg·m-3) | 比热容/(J·kg-1·K-1) | 面向热导率/(W·m-1·K-1) | 纵向热导率/(W·m-1·K-1) | 厚度/μm |
---|---|---|---|---|---|
稳态等效 | 1358 | 1330 | 625 | 0.73 | 60 |
编号 | 材料 | 厚度/mm | 面向热导率参考值/( W·m-1·K-1) | 面向热导率测试值/(W·m-1·K-1) | 相对偏差/% |
---|---|---|---|---|---|
1 | 1060 | 0.17 | 234 | 255 | 9.0 |
2 | 304 | 0.34 | 16 | 17.1 | 6.7 |
3 | 304 | 0.44 | 16 | 16.1 | 0.7 |
4 | 304 | 0.44 | 16 | 16.5 | 2.9 |
5 | 5020 | 0.46 | 138 | 132 | -4.0 |
6 | T2 | 0.58 | 407 | 394 | -3.1 |
7 | 1060 | 0.46 | 234 | 225 | -3.8 |
8 | A3 | 0.49 | 80 | 71.8 | -10.2 |
9 | H62 | 0.39 | 108.9 | 115 | 5.7 |
10 | H62 | 0.48 | 108.9 | 108 | -0.5 |
11 | T2 | 0.39 | 407 | 386 | -5.1 |
12 | T2 | 0.39 | 407 | 400 | -1.8 |
13 | 1060 | 0.17 | 234 | 255 | 9.0 |
14 | A3 | 0.30 | 80 | 83.3 | 4.2 |
Table 3 In-plane thermal conductivity test results of metal sheets
编号 | 材料 | 厚度/mm | 面向热导率参考值/( W·m-1·K-1) | 面向热导率测试值/(W·m-1·K-1) | 相对偏差/% |
---|---|---|---|---|---|
1 | 1060 | 0.17 | 234 | 255 | 9.0 |
2 | 304 | 0.34 | 16 | 17.1 | 6.7 |
3 | 304 | 0.44 | 16 | 16.1 | 0.7 |
4 | 304 | 0.44 | 16 | 16.5 | 2.9 |
5 | 5020 | 0.46 | 138 | 132 | -4.0 |
6 | T2 | 0.58 | 407 | 394 | -3.1 |
7 | 1060 | 0.46 | 234 | 225 | -3.8 |
8 | A3 | 0.49 | 80 | 71.8 | -10.2 |
9 | H62 | 0.39 | 108.9 | 115 | 5.7 |
10 | H62 | 0.48 | 108.9 | 108 | -0.5 |
11 | T2 | 0.39 | 407 | 386 | -5.1 |
12 | T2 | 0.39 | 407 | 400 | -1.8 |
13 | 1060 | 0.17 | 234 | 255 | 9.0 |
14 | A3 | 0.30 | 80 | 83.3 | 4.2 |
石墨膜规格 | 面向热导率/( W·m-1·K-1) | |||||
---|---|---|---|---|---|---|
测试1 | 测试2 | 测试3 | 均值 | 标准差 | 相对标准差/% | |
17 μm单层背胶 | 945 | 977 | 984 | 969 | 20.8 | 2.1 |
17 μm双层背胶 | 529 | 524 | 539 | 531 | 7.6 | 1.4 |
25 μm单层背胶 | 672 | 674 | 667 | 671 | 3.6 | 0.5 |
25 μm双层背胶 | 800 | 829 | 805 | 811 | 15.5 | 1.9 |
40 μm单层背胶(A款) | 681 | 663 | 657 | 667 | 12.5 | 1.9 |
40 μm单层背胶(B款) | 642 | 660 | 651 | 651 | 9.0 | 1.4 |
40 μm双层背胶 | 725 | 713 | 755 | 731 | 21.6 | 3.0 |
Table 4 In-plane thermal conductivity test results of graphite film samples
石墨膜规格 | 面向热导率/( W·m-1·K-1) | |||||
---|---|---|---|---|---|---|
测试1 | 测试2 | 测试3 | 均值 | 标准差 | 相对标准差/% | |
17 μm单层背胶 | 945 | 977 | 984 | 969 | 20.8 | 2.1 |
17 μm双层背胶 | 529 | 524 | 539 | 531 | 7.6 | 1.4 |
25 μm单层背胶 | 672 | 674 | 667 | 671 | 3.6 | 0.5 |
25 μm双层背胶 | 800 | 829 | 805 | 811 | 15.5 | 1.9 |
40 μm单层背胶(A款) | 681 | 663 | 657 | 667 | 12.5 | 1.9 |
40 μm单层背胶(B款) | 642 | 660 | 651 | 651 | 9.0 | 1.4 |
40 μm双层背胶 | 725 | 713 | 755 | 731 | 21.6 | 3.0 |
石墨膜裸材规格 | 厚度/μm | 密度/(g·cm-3) | 闪光法测试/ (W·m-1·K-1) |
---|---|---|---|
17 μm裸材 | 18 | 1.979 | 1588 |
25 μm裸材 | 26 | 1.882 | 1398 |
40 μm裸材 | 40 | 1.978 | 1464 |
Table 5 Flash test data of bare sample
石墨膜裸材规格 | 厚度/μm | 密度/(g·cm-3) | 闪光法测试/ (W·m-1·K-1) |
---|---|---|---|
17 μm裸材 | 18 | 1.979 | 1588 |
25 μm裸材 | 26 | 1.882 | 1398 |
40 μm裸材 | 40 | 1.978 | 1464 |
石墨膜规格 | 总厚/μm | 实测密度/ (kg·m-3) | 密度预测/ (kg·m-3) | 热导率预测/ (W·m-1·K-1) | 本文测试/ (W·m-1·K-1) | 相对偏差/% |
---|---|---|---|---|---|---|
17 μm单层背胶 | 35 | 1785 | 1424 | 771 | 969 | 23 |
17 μm双层背胶 | 90 | 1002 | 1308 | 600 | 531 | -12 |
25 μm单层背胶 | 40 | 1317 | 1514 | 874 | 671 | -26 |
25 μm双层背胶 | 80 | 1548 | 1514 | 874 | 811 | -7.5 |
40 μm单层背胶A款 | 65 | 1354 | 1563 | 901 | 667 | -30 |
40 μm单层背胶B款 | 55 | 1222 | 1684 | 1065 | 651 | -48 |
40 μm双层背胶 | 125 | 1467 | 1590 | 937 | 731 | -25 |
Table 6 Comparison of graphite film sample test data and bare material prediction data
石墨膜规格 | 总厚/μm | 实测密度/ (kg·m-3) | 密度预测/ (kg·m-3) | 热导率预测/ (W·m-1·K-1) | 本文测试/ (W·m-1·K-1) | 相对偏差/% |
---|---|---|---|---|---|---|
17 μm单层背胶 | 35 | 1785 | 1424 | 771 | 969 | 23 |
17 μm双层背胶 | 90 | 1002 | 1308 | 600 | 531 | -12 |
25 μm单层背胶 | 40 | 1317 | 1514 | 874 | 671 | -26 |
25 μm双层背胶 | 80 | 1548 | 1514 | 874 | 811 | -7.5 |
40 μm单层背胶A款 | 65 | 1354 | 1563 | 901 | 667 | -30 |
40 μm单层背胶B款 | 55 | 1222 | 1684 | 1065 | 651 | -48 |
40 μm双层背胶 | 125 | 1467 | 1590 | 937 | 731 | -25 |
1 | Takasugi H , Teraki S , Kurokawa T , et al . Development of the thin film with high thermal conductivity for power devices[C]// IEEE Components, Packaging and Manufacturing Technology Society. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC). Florida, USA: IEEE, 2014: 1776-1781. |
2 | 姜辉 . 基于石墨烯/铜复合材料的散热薄膜导热性能研究[D]. 南京: 南京航空航天大学, 2017. |
Jiang H . Research on thermal conductance of thin films based on graphene / copper composite[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. | |
3 | Sharma S , Kumar P , Chandra R . Mechanical and thermal properties of grapheme-carbon nanotube-reinforced metal matrix composites: a molecular dynamics study[J]. Journal of Composite Materials, 2017, 51(23): 3299-3313. |
4 | 周春玉, 曾亮, 吉莉, 等 . 石墨烯及其复合材料导热性能的研究现状[J]. 材料开发与应用, 2010, 25(6): 94-100. |
Zhou C Y , Zeng L , Ji L , et al . Research on the thermal conductivities of graphene and graphene based composite materials[J]. Development and Application of Materials, 2010, 25(6): 94-100. | |
5 | Yan Z , Nika D L , Balandin A A . Thermal properties of graphene and few-layer graphene: applications in electronics[J]. IET Circuits, Devices & Systems, 2015, 9(1): 4-12. |
6 | 张建生, 杨君友, 朱文, 等 . 薄膜热导率测试方法研究进展[J]. 材料导报, 2010, 24(7): 103-107. |
Zhang J S , Yang J Y , Zhu W , et al . Research advances in the measurement for the thermal conductivity of thin solid films[J]. Materials Review, 2010, 24(7): 103-107. | |
7 | 刘珊, 徐梁, 曾智强 . 微米级超薄石墨膜的导热性能测试[J]. 炭素, 2017, (4): 42-45. |
Liu S , Xu L , Zeng Z Q . Thermal conductivity testing of thin graphite films[J]. Carbon, 2017, (4): 42-45. | |
8 | 厉阳, 侯德鑫, 叶树亮 . 基于热成像的材料热扩散率测量方法研究[J].计量学报, 2017, 38(1): 28-33. |
Li Y , Hou D X , Ye S L . Research on measurement method of thermal diffusivity of materials based on thermography[J]. Acta Metrologica Sinica, 2017, 38(1): 28-33. | |
9 | 朱玉祥 . 改进型瞬态平面热源法的实验研究[D]. 青岛: 青岛理工大学, 2015. |
Zhu Y X . Experimental study of improved transient plane source[D]. Qingdao: Qingdao University of Technology, 2015. | |
10 | Ruffio E , Saury D , Petit D . Improvement and comparison of some estimators dedicated to thermal diffusivity estimation of orthotropic materials with the 3D-flash method[J]. International Journal of Heat & Mass Transfer, 2013, 64(64): 1064-1081. |
11 | Krapez J C , Spagnolo L , Frieß M , et al . Measurement of in-plane diffusivity in non-homogeneous slabs by applying flash thermography[J]. International Journal of Thermal Sciences, 2004, 43(10): 967-977. |
12 | Forte G , Ronca S . Laser-flash in-plane thermal analysis: the case of oriented UHMWPE[C]// Ⅷ International Conference on “Times of Polymers and Composites”, AIP Conference Proceedings. Naples, Italy: AIP Publishing, 2016, 1736(1): 020171. |
13 | Zacharia S G , Siddiqui A O , Lahiri J . In situ thermal diffusivity determination of anisotropic composite structures: transverse diffusivity measurement[J]. NDT & E International, 2012, 48: 1-9. |
14 | Ruoho M , Valset K , Finstad T , et al . Measurement of thin film thermal conductivity using the laser flash method[J]. Nanotechnology, 2015, 26(19): 195706. |
15 | Ma L , Srivastava R , Barpanda D , et al . An inverse approach to characterize anisotropic thermal conductivities of a dry fibrous preform composite[J]. Journal of Reinforced Plastics & Composites, 2013, 32(24): 1916-1927. |
16 | Lei Z , Zhu S K , Pan N . Transient methods of thermal properties measurement on fibrous materials[J]. Journal of Heat Transfer, 2010, 132(3): 39-51. |
17 | 江楠竹, 潘江, 王玉刚, 等 . TPS法导热系数测量的仿真分析[J]. 中国测试, 2016, 42(6): 122-126. |
Jiang N Z , Pan J , Wang Y G , et al . Simulation and analysis of thermal conductivity measurement with TPS method[J]. China Measurement & Testing Technology, 2016, 42(6): 122-126. | |
18 | 周倩楠 . 石墨烯/碳纳米管/环氧树脂复合材料的导热性能的实验研究[D]. 青岛: 青岛理工大学, 2018. |
Zhou Q N . Experimental study on thermal conductivity of GP / MWCNTs /EP composites[D]. Qingdao: Qingdao University of Technology, 2018. | |
19 | 翟德怀 . 基于Hot Disk的薄板材料导热系数测量方法的研究[D]. 广州: 华南理工大学, 2015. |
Zhai D H . Study on the thermal conductivity measurement of thin samples by Hot Disk thermal constants analyser[D]. Guangzhou: South China University of Technology, 2015. | |
20 | Wang Y W , Li Y N . Influence of heat loss through probe electrical leads on thermal conductivity measurement with TPS method[J]. Journal of Measurement Science & Instrumentation, 2018, 9(1): 9-15. |
21 | Beyerle R , Smalc M , Wayne R , et al . A comparison of methods to measure the thermal diffusivity of anisotropic graphite heat spreaders[C]// Electronic and Photonic Packaging Division, ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. California, USA: American Society of Mechanical Engineers, 2013: V002T08A022. |
22 | 邓玉杰 . 基于3ω法体块和薄膜材料热物性的研究[D]. 南京: 南京大学, 2016. |
Deng Y J . Study on buification and thin-film thermal properties based on the 3ω method[D]. Nanjing: Nanjing University, 2016. | |
23 | 何龙 . 3ω法在薄膜界面热阻测量中的应用[D]. 成都: 电子科技大学, 2016. |
He L . Application of the 3-omega method on measuring the interfacial thermal resistance in thin films[D]. Chengdu: University of Electronic Science and Technology of China, 2016. | |
24 | 苏国萍, 唐大伟, 郑兴华, 等 . 3ω方法测量各向异性SiC晶体的导热系数[J]. 工程热物理学报, 2011, 32(11): 1885-1888. |
Su G P , Tang D W , Zheng X H , et al . Determination of thermal conductivity of anisotropic SiC crystal using 3ω method[J]. Journal of Engineering Thermophysics, 2011, 32(11): 1885-1888. | |
25 | Zhu Y . Heat-loss modified Angstrom method for simultaneous measurements of thermal diffusivity and conductivity of graphite sheets: the origins of heat loss in Angstrom method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 784-791. |
26 | Ras M A , May D , Wunderle B . Novel test stand for thermal diffusivity measurement of bulk and thin films[C]// 2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). Budapest, Hungary: IEEE, 2016: 243-249. |
27 | Aaron K , Tang X , Tritt T M . Measurement of the in-plane thermal conductivity of single crystals by the parallel thermal conductance technique[C]// ICT 2005 International Conference on Thermoelectrics. SC, USA: IEEE, 2005: 87-90. |
28 | Teertstra P , Karimi G , Li X . Measurement of in-plane effective thermal conductivity in PEM fuel cell diffusion media[J]. Electrochimica Acta, 2011, 56(3): 1670-1675. |
29 | Sadeghi E , Djilali N , Bahrami M . A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(7): 3565-3571. |
30 | Gholami A , Ahmadi M , Bahrami M . A modified steady state method for measurement of in-plane thermal conductivity[C]// 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). Alabama, USA: IEEE, 2016: 22-26. |
31 | 蔡北虎, 董德平, 屈金祥 . 国产石墨薄膜低温导热系数测量[J]. 低温工程, 2008, (1): 29-32. |
Cai B H , Dong D P , Qu J X . Measurement of thermal conductivity for home-made graphite sheet at low temperature[J]. Cryogenics, 2008, (1): 29-32. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[8] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[12] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||