CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 258-264.DOI: 10.11949/0438-1157.20190563
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Tao WANG(),Xiangyang LIU,Maogang HE()
Received:
2019-05-24
Revised:
2019-06-04
Online:
2019-09-06
Published:
2019-09-06
Contact:
Maogang HE
通讯作者:
何茂刚
作者简介:
王韬(1995—),女,博士研究生,基金资助:
CLC Number:
Tao WANG, Xiangyang LIU, Maogang HE. Molecular dynamics simulation of ionic liquid [bmim][Tf2N][J]. CIESC Journal, 2019, 70(S2): 258-264.
王韬, 刘向阳, 何茂刚. 离子液体[bmim][Tf2N]的分子动力学模拟[J]. 化工学报, 2019, 70(S2): 258-264.
Add to citation manager EndNote|Ris|BibTeX
1 | ZhaoW, EslamiH, CavalcantiW L, et al. A refined all-atom model for the ionic liquid 1-n-butyl 3-methylimidazolium bis (trifluoromethylsulfonyl) imide [bmim][Tf2N][J]. Zeitschrift für Physikalische Chemie, 2007, 221(11/12): 1647-1662. |
2 | HaoZ, JinW, ZhangJ A, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules, 2005, 38(20): 8272-8277. |
3 | ZhouY, AntoniettiM. Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique[J]. Advanced Materials, 2010, 15(17): 1452-1455. |
4 | CamperD, BaraJ E, GinD L, et al. Room-temperature ionic liquid-amine solutions : tunable solvents for efficient and reversible capture of CO2[J]. Industrial & Engineering Chemistry Research, 2008, 47(47): 8496-8498. |
5 | HallettJ P, WeltonT. Room-temperature ionic liquids: solvents for synthesis and catalysis(2)[J]. Cheminform, 2011, 111(5): 2071-2084. |
6 | YokozekiA, ShiflettM B. Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid [hmim][Tf2N][J]. Energy & Fuels, 2010, 23(24): 1001-1008. |
7 | ShiflettM B, YokozekiA. Separation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6][J]. Fluid Phase Equilibria, 2010, 294(1): 105-113. |
8 | HrubiskováK, SimkovicováM, NovotnýJ. Local organization of water and its effect on the structural heterogeneities in room-temperature ionic liquid/H2O mixtures[J]. Journal of Raman Spectroscopy, 2010, 39(2): 233-237. |
9 | KuwabataS, TsudaT, TorimotoT. Room-temperature ionic liquid. A new medium for material production and analyses under vacuum conditions[J]. J. Phys. Chem. Lett., 2010, 1(21): 3177-3188. |
10 | ShiflettM B, NiehausA M S, YokozekiA. Separation of N2O and CO2 using room-temperature ionic liquid [bmim][BF4][J]. Journal of Physical Chemistry B, 2011, 115(13): 3478-3487. |
11 | SunY K, SunG Y, JiaM, et al. Cost-effective imprinting to minimize consumption of template in room-temperature ionic liquid for fast purification of chlorogenic acid from the extract of E. ulmoides leaves[J]. Analytical and Bioanalytical Chemistry, 2019 , 411( 6): 1261-1271. |
12 | KarM, TutusausO, MacfarlaneD R, et al. Novel and versatile room temperature ionic liquids for energy storage[J]. Energy & Environmental Science, 2019, 12(2): 566-571. |
13 | LiX, SchatzG C, NesbittD J. Anion effects in the scattering of CO2 from the room-temperature ionic liquids [bmim][BF4] and [bmim][Tf2N]: insights from quantum mechanics/molecular mechanics trajectories[J]. Journal of Physical Chemistry B, 2015, 116(11): 3587-3602. |
14 | GurkanB, SimeonF, HattonT A. Quinone reduction in ionic liquids for electrochemical CO2 separation[J]. ACS Sustainable Chem. Eng., 2015, 3(7): 1394-1405. |
15 | PanjaS, RuhelaR, TripathiS C, et al. Effect of room temperature ionic liquid on the extraction behavior of plutonium (Ⅳ) using a novel reagent, bis-(2-ethylhexyl) carbamoyl methoxy phenoxy-bis-(2-ethylhexyl) acetamide [Benzodioxodiamide, BenzoDODA][J]. Separation & Purification Technology, 2015, 151: 139-146. |
16 | BoothR S, AnnesleyC J, YoungJ W, et al. Identification of multiple conformers of the ionic liquid [emim][tf2n] in the gas phase using IR/UV action spectroscopy [J]. Physical Chemistry Chemical Physics, 2016, 18(25): 17037-17043. |
17 | BaelhadjA C, MuteletF, JiangB, et al. Activity coefficients at infinite dilution for organic solutes dissolved in two 1, 2, 3-tris(diethylamino)cyclopenylium based room temperature ionic liquids[J]. Journal of Molecular Liquids, 2016, 223: 89-99. |
18 | KanakuboM, HarrisK R. Density of 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide and 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide over an extended pressure range up to 250 MPa[J]. Journal of Chemical & Engineering Data, 2015, 60(5): 1408-1418. |
19 | TariqM, CarvalhoP J, CoutinhoJ A P, et al. Viscosity of (C2-C14) 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ionic liquids in an extended temperature range[J]. Fluid Phase Equilibria, 2011, 301(1): 22-32. |
20 | AndR C, VegaL F. Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature[J]. Journal of Physical Chemistry B, 2006, 110(29): 14426-14435. |
21 | ShaM, ZhangF, WuG, et al. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation[J]. Journal of Chemical Physics, 2008, 128(13): 792. |
22 | ShaoQ. On the influence of hydrated imidazolium-based ionic liquid on protein structure stability: a molecular dynamics simulation study [J]. Journal of Chemical Physics, 2013, 139(11): 09B641_1. |
23 | WuM, WeiL, SongL, et al. Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation[J]. RSC Advances, 2017, 7(46): 28945-28950. |
24 | RajuS G, HariharanK S, ParkD H, et al. Effects of variation in chain length on ternary polymer electrolyte-ionic liquid mixture—a molecular dynamics simulation study[J]. Journal of Power Sources, 2015, 293(10): 983-992. |
25 | SafinejadR, MehdipourN, EslamiH. Atomistic reverse nonequilibrium molecular dynamics simulation of the viscosity of ionic liquid 1-n-butyl 3-methylimidazolium bis (trifluoromethylsulfonyl) imide [bmim][Tf2N][J]. Physical Chemistry Chemical Physics, 2018, 20(33): 21544-21551. |
26 | FatimaU, AnwarN, Montes-CamposH, et al. Molecular dynamic simulation, molecular interactions and structural properties of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide+ 1-butanol/1-propanol mixtures at (298.15—323.15) K and 0.1 MPa[J]. Fluid Phase Equilibria, 2018, 472: 9-21. |
27 | NeumannJ, GolubB, OdebrechtL M, et al. Revisiting imidazolium based ionic liquids: effect of the conformation bias of the [ntf2] anion studied by molecular dynamics simulations[J]. The Journal of Chemical Physics, 2018, 148(19): 193828. |
28 | Canongia LopesJ N, PáduaA A H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions[J]. The Journal of Physical Chemistry B, 2004, 108(43): 16893-16898. |
29 | TroncosoJ, CerdeiriñaC A, SanmamedY A, et al. Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][Tf2N][J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1856-1859. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[5] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[6] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[7] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[8] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[9] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[10] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[11] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[12] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[13] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[14] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[15] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||