CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3748-3763.DOI: 10.11949/0438-1157.20190616
• Reviews and monographs • Previous Articles Next Articles
Liang GE1(),Bin WU2(),Xin WANG1,Zhang ZHAO1,Tongwen XU1()
Received:
2019-06-02
Revised:
2019-09-03
Online:
2019-10-05
Published:
2019-10-05
Contact:
Tongwen XU
通讯作者:
徐铜文
作者简介:
葛亮(1986—),男,博士,副研究员,基金资助:
CLC Number:
Liang GE,Bin WU,Xin WANG,Zhang ZHAO,Tongwen XU. Application in water system separation of MOFs separation membranes[J]. CIESC Journal, 2019, 70(10): 3748-3763.
葛亮,伍斌,王鑫,赵璋,徐铜文. MOFs分离膜在水系分离中的应用[J]. 化工学报, 2019, 70(10): 3748-3763.
1 | FurukawaH, CordovaK E, KeeffeM O, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
2 | LiX, WangB, CaoY H, et al. Water contaminant elimination based on metal-organic frameworks and perspective on their industrial applications[J]. ACS Sustain. Chem. Eng., 2019, 7(5): 4548-4563. |
3 | BurtchN C, JasujaH, WaltonK S, Water stability and adsorption in metal-organic frameworks[J]. Chem. Rev., 2014, 114(20): 10575-10612. |
4 | LowJ J, BeninA I, JakubczakP, et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration[J]. J. Am. Chem. Soc., 2009, 131(43): 15834-15842. |
5 | ColomboV, GalliS, ChoiH J, et al. High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites[J]. Chem. Sci., 2011, 2: 1311-1319. |
6 | ChoiH J, DincăM, DaillyA, et al. Hydrogenstorage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate[J]. Energy Environ. Sci., 2010, 3: 117-123. |
7 | DesaiA V, MannaB, KarmakarA, et al. A water-stable cationic metal-organic framework as a dual adsorbent of oxoanion pollutants[J]. Angew. Chem. Int. Ed., 2016, 55(27): 7811-7815. |
8 | YuanS, FengL, WangK C, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Adv. Mater., 2018, 30(37): 1704303. |
9 | JiangH L, FengD W, WangK C, et al. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence[J]. J. Am. Chem. Soc., 2013, 135(37): 13934-13938. |
10 | JiangH L, FengD W, LiuT F, et al. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks[J]. J. Am. Chem. Soc., 2012, 134(36): 14690-14693. |
11 | FengD W, GuZ Y, LiJ R, et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angew. Chem. Int. Ed., 2012, 51(41): 10307-10310. |
12 | FengD W, ChungW C, WeiZ, et al. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination[J]. J. Am. Chem. Soc., 2013, 135(45): 17105-17110. |
13 | PearsonR G. Hard and soft acids and bases[J]. J. Am. Chem. Soc., 1963, 85(22): 3533-3539. |
14 | KangI J, KhanN A, HaqueE, et al. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions[J]. Chemistry, 2011, 17(23): 6437-6442. |
15 | BellarosaL, Gutierrez-SevillanoJ J, CaleroS, et al. How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family[J]. Phys. Chem. Chem. Phys., 2013, 15: 17696-17704. |
16 | TaylorJ M, VaidhyanathanR, IremongerS S, et al. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers[J]. J. Am. Chem. Soc., 2012, 134(35): 14338-14340. |
17 | LeeY J, ChangY J, LeeD J, et al. Water stable metal-organic framework as adsorbent from aqueous solution: a mini-review[J]. J. Taiwan Inst. Chem. E., 2018, 93: 176-183. |
18 | JiY L, QianW J, YuY W, et al. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chinese J. Chem. Eng., 2017, 25(11): 1639-1652. |
19 | LiuX L, DemirN K, WuZ T, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. J. Am. Chem. Soc., 2015, 137(22): 6999-7002. |
20 | PauziM Z M, MahpozN M, AbdullahN, et al. Feasibility study of CAU-1 deposited on alumina hollow fiber for desalination applications[J]. Sep. Purif. Technol., 2019, 217: 247-257. |
21 | HuY X, DongX L, NanJ P, et al. Metal-organic framework membranes fabricated via reactive seeding[J]. Chem. Commun., 2011, 47: 737-739. |
22 | ZhuY Q, GuptaK M, LiuQ, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes[J]. Desalination, 2016, 385: 75-82. |
23 | MahpozN M, AbdullahN, PauziM Z M, et al. Synthesis and performance evaluation of zeolitic imidazolate framework-8 membranes deposited onto alumina hollow fiber for desalination[J]. Korean J. Chem. Eng., 2019, 36(3): 439-449. |
24 | LiZ, YangP P, GaoZ Z, et al. A new ZIF molecular-sieving membrane for high-efficiency dye removal[J]. Chem. Commun., 2019, 55: 3505-3508. |
25 | LiY B, WeeL H, VolodinA, et al. Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method[J]. Chem. Commun., 2015, 51: 918-920. |
26 | DukeM C, ZhuB, DohertyC M, et al. Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes[J]. Desalination, 2016, 377: 128-137. |
27 | WangX R, ZhaiL Z, WangY X, et al. Improving water-treatment performance of zirconium metal-organic framework membranes by postsynthetic defect healing[J]. ACS Appl. Mater. Interfaces, 2017, 9(43): 37848-37855. |
28 | YuanJ W, HungW S, ZhuH P, et al. Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater[J]. J. Membrane Sci., 2019, 572: 20-27. |
29 | YaoJ F, DongD H, LiD, et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate[J]. Chem. Commun., 2011, 47: 2559-2561. |
30 | WangN X, LiX T, WangL, et al. Nanoconfined zeolitic imidazolate framework membranes with composite layers of nearly zero thickness[J]. ACS Appl. Mater. Interfaces, 2016, 8(34): 21979-21983. |
31 | ShamsaeiE, LinX C, LowZ X, et al. Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate[J]. ACS Appl. Mater. Interfaces, 2016, 8(9): 6236-6244. |
32 | BarankovaE, TanX Y, VillalobosL F, et al. A metal chelating porous polymeric support: the missing link for a defect-free metal-organic framework composite membrane[J]. Angew. Chem. Int. Ed., 2017, 56(11): 2965-2968. |
33 | ZhangH C, HouJ, HuY X, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Sci. Adv., 2018, 4: eaaq0066. |
34 | XuT T, ShehzadM A, YuD B, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12: 1-6. |
35 | AngH X, HongL. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration[J]. ACS Appl. Mater. Interfaces,2017, 9(33): 28079-28088. |
36 | MaX H, YangZ, YaoZ K, et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes[J]. J. Membrane Sci., 2017, 525: 269-276. |
37 | WangN X, LiuT J, ShenH P, et al. Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration[J]. AIChE Journal, 2016, 62(2): 538-546. |
38 | ZhangR, JiS L, WangN X, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angew. Chem. Int. Ed., 2014, 53(37): 9775-9779. |
39 | GuoY, YingY L, MaoY Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angew. Chem. Int. Ed., 2016, 55(48): 15120-15124. |
40 | YangL B, WangZ, ZhangJ L. Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal[J]. J. Membrane Sci., 2017, 532: 76-86. |
41 | YangL B, WangZ, ZhangJ L. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation assisted interfacial reaction[J]. J. Mater. Chem. A, 2017, 5: 15342-15355. |
42 | GuoY, WangX B, HuP, et al. ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules[J]. Applied Materials Today, 2016, 5: 103-110. |
43 | WangY, LiX Y, ZhaoS F, et al. Thin-film composite membrane with interlayer decorated metal-organic framework UiO-66 toward enhanced forward osmosis performance[J]. Ind. Eng. Chem. Res., 2019, 58(1): 195-206. |
44 | QiuM, HeC J. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer[J]. J. Hazard. Mater., 2019, 367: 339-347. |
45 | WangL Y, FangM Q, LiuJ, et al. Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications[J]. ACS Appl. Mater. Interfaces, 2015, 7(43): 24082-24093. |
46 | ZhuJ Y, QinL J, UlianaA, et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration[J]. ACS Appl. Mater. Interfaces, 2017, 9(2): 1975-1986. |
47 | BaoY P, ChenY F, LimT T, et al. A novel metal-organic framework (MOF)-mediated interfacial polymerization for direct deposition of polyamide layer on ceramic substrates for nanofiltration[J]. Adv. Mater. Interfaces, 2019, 6(9): 1900132. |
48 | ZhangP, GongJ L, ZengG M, et al. Ultrathin reduced graphene oxide/MOF nanofiltration membrane with improved purification performance at low pressure[J]. Chemosphere, 2018, 204: 378-389. |
49 | GuanK C, ZhaoD, ZhangM C, et al. 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance[J]. J. Membrane Sci., 2017, 542: 41-51. |
50 | LiuY C, ZhuM, ChenM Y, et al. A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye[J]. Chem. Eng. J., 2019, 359: 47-57. |
51 | DennyJ M S, CohenS M. In situ modification of metal-organic frameworks in mixed-matrix membranes[J]. Angew. Chem. Int. Ed., 2015, 54(31): 9029-9032. |
52 | LiuT Y, YuanH G, LiuY Y, et al. Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity[J]. ACS Nano, 2018, 12(9): 9253-9265. |
53 | MakhethaT A, MoutloaliR M. Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection[J]. J. Membrane Sci., 2018, 554: 195-210. |
54 | ZhangY Y, FengX, LiH, et al. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane[J]. Angew. Chem. Int. Ed., 2015, 54(14): 4259-4263. |
55 | RuanH M, GuoC M, YuH W, et al. Fabrication of a MIL-53(Al) nanocomposite membrane and potential application in desalination of dye solutions[J]. Ind. Eng. Chem. Res., 2016, 55(46): 12099-12110. |
56 | MohammadnezhadF, FeyziM, ZinadiniS. A novel Ce-MOF/PES mixed matrix membrane; synthesis, characterization and antifouling evaluation[J]. J. Ind. Eng. Chem., 2019, 71: 99-111. |
57 | ZirehpourA, RahimpourA, UlbrichtM. Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane[J]. J. Membrane Sci., 2017, 531: 59-67. |
58 | WangL D, BoutilierM S, KidambiP R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nat. Nanotech., 2017, 12: 509-522. |
59 | TrinhD X, TranT P N, TaniikeT. Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration[J]. Sep. Purif. Technol., 2017, 177: 249-256. |
60 | WangL Y, FangM Q, LiuJ, et al. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water[J]. RSC Adv., 2015, 5: 50942-50954. |
61 | BasuS, BalakrishnanM. Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams[J]. Sep. Purif. Technol., 2017, 179: 118-125. |
62 | ChenY B, LiuH Q, HuX Y, et al. PVDF/Cu-BTC composite membranes for dye separation[J]. Fibers and Polymers, 2017, 18(7): 1250-1254. |
63 | LiY B, WeeL H, MartensJ A, et al. Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance[J]. J. Membrane Sci., 2017, 523: 561-566. |
64 | GuoY, PengX S. Mass transport through metal organic framework membranes[J]. Science China Mater., 2019, 62(1): 25-42. |
65 | PengY, YaoR, YangW S. A poly(amidoamine) nanoparticle cross-linked two-dimensional metal-organic framework nanosheet membrane for water purification[J]. Chem. Commun., 2019, 55: 3935-3938. |
66 | MaJ, GuoX Y, YingY P, et al. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance[J]. Chem. Eng. J., 2017, 313: 890-898. |
67 | ElrasheedyA, NadyN, BassyouniM, et al. Metal organic framework based polymer mixed matrix membranes: review on applications in water purification[J]. Membranes, 2019, 9(7): 88. |
68 | Cay-DurgunP, LindM L. Nanoporous materials in polymeric membranes for desalination[J]. Curr. Opin. Chem. Eng., 2018, 20: 19-27. |
69 | GohP S, IsmailA F. A review on inorganic membranes for desalination and wastewater treatment[J]. Desalination, 2018, 434: 60-80. |
70 | HuZ Q, ChenY F, JiangJ W. Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation[J]. J. Chem. Phys., 2011, 134(13): 134705. |
71 | GuptaK M, ZhangK, JiangJ W. Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups[J]. Langmuir, 2015, 31(48): 13230-13237. |
72 | KadhomM, HuW M, DengB L. Thin film nanocomposite membrane filled with metal-organic frameworks UiO-66 and MIL-125 nanoparticles for water desalination[J]. Membranes, 2017, 7(2): 31. |
73 | DuanJ T, PanY C, PachecoF, et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8[J]. J. Membrane Sci., 2015, 476: 303-310. |
74 | HeY R, TangY P, MaD C, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal[J]. J. Membrane Sci., 2017, 541: 262-270. |
75 | MaD C, PehS B, HanG, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7523-7534. |
76 | DaiR B, ZhangX R, LiuM X, et al. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis[J]. J. Membrane Sci., 2019, 573: 46-54. |
77 | MaD, HanG, PehS B, et al. Water-stable metal-organic framework UiO-66 for performance enhancement of forward osmosis membranes[J]. Ind. Eng. Chem. Res., 2017, 56: 12773-12782. |
78 | ZhaiZ, ZhaoN, DongW J, et al. In situ assembly of a zeolite imidazolate framework hybrid thin-film nanocomposite membrane with enhanced desalination performance induced by noria-polyethyleneimine codeposition[J]. ACS Appl. Mater. Interfaces, 2019, 11(13): 12871-12879. |
79 | GahlotS, YadavV, SharmaP P, et al. Zn-MOF@SPES composite membranes: synthesis, characterization and its electrochemical performance[J]. Sep. Sci. Technol., 2018, 54(3): 377-385. |
80 | WangP F, WangM, LiuF, et al. Ultrafast ion sieving using nanoporous polymeric membranes[J]. Nature Commun., 2018, 9: 569. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[7] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[8] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[9] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[10] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[11] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[12] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[13] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 421
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 541
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||