CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 487-499.DOI: 10.11949/0438-1157.20190754
• Reviews and monographs • Previous Articles Next Articles
Wencheng ZHANG1(),Junbo GONG1,Weibing DONG2,Songgu WU1()
Received:
2019-07-02
Revised:
2019-10-17
Online:
2020-02-05
Published:
2020-02-05
Contact:
Songgu WU
通讯作者:
吴送姑
作者简介:
张文铖(1995—),男,硕士研究生,基金资助:
CLC Number:
Wencheng ZHANG,Junbo GONG,Weibing DONG,Songgu WU. Research progress in effect of gel on crystallization process[J]. CIESC Journal, 2020, 71(2): 487-499.
张文铖,龚俊波,董伟兵,吴送姑. 凝胶对结晶过程影响的研究进展[J]. 化工学报, 2020, 71(2): 487-499.
Add to citation manager EndNote|Ris|BibTeX
1 | Pauchet M, Morelli T, Coste S, et al. Crystallization of (+/-)-modafinil in gel: access to form I, form Ⅲ, and twins[J]. Crystal Growth & Design, 2006, 6(8): 1881-1889. |
2 | Oaki Y, Imai H. Experimental demonstration for the morphological evolution of crystals grown in gel media[J]. Crystal Growth & Design, 2003, 3(5): 711-716. |
3 | Petrova R I, Swift J A. Habit changes of sodium bromate crystals grown from gel media[J]. Crystal Growth & Design, 2002, 2(6): 573-578. |
4 | Petrova R I, Patel R, Swift J A. Habit modification of asparagine monohydrate crystals by growth in hydrogel media[J]. Crystal Growth & Design, 2006, 6(12): 2709-2715. |
5 | Li H, Fujiki Y, Sada K, et al. Gel incorporation inside of organic single crystals grown in agarose hydrogels[J]. CrystEngComm, 2011, 13(4): 1060-1062. |
6 | Chen L, Ye T, Liu Y, et al. Gel network incorporation into single-crystals: effects of gel structures and crystal-gel interaction[J]. CrystEngComm, 2014, 16(30): 6901-6906. |
7 | Yang D, Qi L M, Ma J M. Well-defined star-shaped calcite crystals formed in agarose gels[J]. Chemical Communications, 2003, (10): 1180-1181. |
8 | Duffus C, Camp P J, Alexander A J. Spatial control of crystal nucleation in agarose gel[J]. Journal of the American Chemical Society, 2009, 131(33): 11676-11677. |
9 | Li H Y, Xin H L, Muller D A, et al. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels[J]. Science, 2009, 326(5957): 1244-1247. |
10 | Li H Y, Estroff L A. Porous calcite single crystals grown from a hydrogel medium[J]. CrystEngComm, 2007, 9(12): 1153-1155. |
11 | Petrova R I, Swift J A. Selective growth and distribution of crystalline enantiomers in hydrogels[J]. Journal of the American Chemical Society, 2004, 126(4): 1168-1173. |
12 | Sugiyama S, Tanabe K, Hirose M, et al. Protein crystallization in agarose gel with high strength: developing an automated system for protein crystallographic processes[J]. Japanese Journal of Applied Physics, 2009, 48(7): 075502. |
13 | Matsumura H, Sugiyama S, Hirose M, et al. Approach for growth of high-quality and large protein crystals[J]. Journal of Synchrotron Radiation, 2011, 18: 16-19. |
14 | Biertumpfel C, Basquin J, Suck D, et al. Crystallization of biological macromolecules using agarose gel[J]. Acta Crystallographic a Section D-Structural Biology, 2002, 58: 1657-1659. |
15 | Tasnim T, Goh A, Gowayed O, et al. Dendritic growth of glycine from nonphotochemical laser-induced nucleation of supersaturated aqueous solutions in agarose gels[J]. Crystal Growth & Design, 2018, 18(10): 5927-5933. |
16 | Grassmann O, Muller G, Lobmann P. Organic-inorganic hybrid structure of calcite crystalline assemblies grown in a gelatin hydrogel matrix: relevance to biomineralization[J]. Chemistry of Materials, 2002, 14(11): 4530-4535. |
17 | Huang Y X, Buder J, Cardoso-Gil R, et al. Shape development and structure of a complex (otoconia-like?) calcite-gelatine composite[J]. Angewandte Chemie-International Edition, 2008, 47(43): 8280-8284. |
18 | Yucel U, Coupland J N. Ultrasonic characterization of lactose crystallization in gelatin gels[J]. Journal of Food Science, 2011, 76(1): E48-E54. |
19 | Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941-3994. |
20 | Shafiei-Sabet S, Hamad W Y, Hatzikiriakos S G. Rheology of nanocrystalline cellulose aqueous suspensions[J]. Langmuir, 2012, 28(49): 17124-17133. |
21 | Lewis L, Derakhshandeh M, Hatzikiriakos S G, et al. Hydrothermal gelation of aqueous cellulose nanocrystal suspensions[J]. Biomacromolecules, 2016, 17(8): 2747-2754. |
22 | Heath L, Thielemans W. Cellulose nanowhisker aerogels[J]. Green Chemistry, 2010, 12(8): 1448-1453. |
23 | Huang L, Chen X, Nguyen T X, et al. Nano-cellulose 3D-networks as controlled-release drug carriers[J]. Journal of Materials Chemistry B, 2013, 1(23): 2976-2984. |
24 | Valo H, Arola S, Laaksonen P, et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels[J]. European Journal of Pharmaceutical Sciences, 2013, 50(1): 69-77. |
25 | Badshah M, Ullah H, Khan S A, et al. Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery[J]. Cellulose, 2017, 24(11): 5041-5052. |
26 | Ruiz-Palomero C, Kennedy S R, Soriano M L, et al. Pharmaceutical crystallization with nanocellulose organogels[J]. Chemical Communications, 2016, 52(50): 7782-7785. |
27 | Banerjee M, Saraswatula S, Willows L G, et al. Pharmaceutical crystallization in surface-modified nanocellulose organogels[J]. Journal of Materials Chemistry B, 2018, 6(44): 7317-7328. |
28 | Sugiyama S, Shimizu N, Sazaki G, et al. A novel approach for protein crystallization by a synthetic hydrogel with thermoreversible gelation polymer[J]. Crystal Growth & Design, 2013, 13(5): 1899-1904. |
29 | Parveen N, Khan A A, Baskar S, et al. Intraperitoneal transplantation of hepatocytes embedded in thermoreversible gelation polymer (mebiol gel) in acute liver failure rat model[J]. Hepatitis Monthly, 2008, 8(4): 275-280. |
30 | Cordier P, Tournilhac F, Soulie-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008, 451(7181): 977-980. |
31 | Steed J W. Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry[J]. Chemical Society Reviews, 2010, 39(10): 3686-3699. |
32 | Segarra-Maset M D, Nebot V J, Miravet J F, et al. Control of molecular gelation by chemical stimuli[J]. Chemical Society Reviews, 2013, 42(17): 7086-7098. |
33 | Babu S S, Praveen V K, Ajayaghosh A. Functional pi-gelators and their applications[J]. Chemical Reviews, 2014, 114(4): 1973-2129. |
34 | Okesola B O, Vieira V M P, Cornwell D J, et al. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives - efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future[J]. Soft Matter, 2015, 11(24): 4768-4787. |
35 | Kumar D K, Steed J W. Supramolecular gel phase crystallization: orthogonal self-assembly under non-equilibrium conditions[J]. Chemical Society Reviews, 2014, 43(7): 2080-2088. |
36 | Foster J A, Piepenbrock M-O M, Lloyd G O, et al. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth[J]. Nature Chemistry, 2010, 2(12): 1037-1043. |
37 | Foster J A, Damodaran K K, Maurin A, et al. Pharmaceutical polymorph control in a drug-mimetic supramolecular gel[J]. Chemical Science, 2017, 8(1): 78-84. |
38 | Dawn A, Andrew K S, Yufit D S, et al. Supramolecular gel control of cisplatin crystallization: identification of a new solvate form using a cisplatin-mimetic gelator[J]. Crystal Growth & Design, 2015, 15(9): 4591-4599. |
39 | Dastidar P. Supramolecular gelling agents: can they be designed?[J]. Chemical Society Reviews, 2008, 37(12): 2699-2715. |
40 | Suzuki M, Nakajima Y, Yumoto M, et al. In situ organogelation at room temperature: direct synthesis of gelators in organic solvents[J]. Organic & Biomolecular Chemistry, 2004, 2(8): 1155-1159. |
41 | de Loos M, Ligtenbarg A G J, van Esch J, et al. Tripodal tris-urea derivatives as gelators for organic solvents[J]. European Journal of Organic Chemistry, 2000, (22): 3675-3678. |
42 | Estroff L A, Addadi L, Weiner S, et al. An organic hydrogel as a matrix for the growth of calcite crystals[J]. Organic & Biomolecular Chemistry, 2004, 2(1): 137-141. |
43 | Geffroy C, Foissy A, Persello J, et al. Surface complexation of calcite by carboxylates in water[J]. Journal of Colloid and Interface Science, 1999, 211(1): 45-53. |
44 | Belcher A M, Wu X H, Christensen R J, et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins[J]. Nature, 1996, 381(6577): 56-58. |
45 | Falini G, Albeck S, Weiner S, et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules[J]. Science, 1996, 271(5245): 67-69. |
46 | Daly R, Kotova O, Boese M, et al. Chemical nano-gardens: growth of salt nanowires from supramolecular self-assembly gels[J]. ACS Nano, 2013, 7(6): 4838-4845. |
47 | Kotova O, Daly R, dos Santos C M G, et al. Europium-directed self-assembly of a luminescent supramolecular gel from a tripodal terpyridine-based ligand[J]. Angewandte Chemie-International Edition, 2012, 51(29): 7208-7212. |
48 | Ghosh D, Ferfolja K, Drabavicius Z, et al. Crystal habit modification of Cu(Ⅱ) isonicotinate-N-oxide complexes using gel phase crystallisation[J]. New Journal of Chemistry, 2018, 42(24): 19963-19970. |
49 | Aparicio F, Matesanz E, Sanchez L. Cooperative self-assembly of linear organogelators. Amplification of chirality and crystal growth of pharmaceutical ingredients[J]. Chemical Communications, 2012, 48(46): 5757-5759. |
50 | Kennedy S R, Jones C D, Yufit D S, et al. Tailored supramolecular gel and microemulsion crystallization strategies - is isoniazid really monomorphic?[J]. CrystEngComm, 2018, 20(10): 1390-1398. |
51 | Flechon A, Culine S, Droz J P. Intensive and timely chemotherapy, the key of success in testicular cancer[J]. Critical Reviews in Oncology Hematology, 2001, 37(1): 35-46. |
52 | Buerkle L E, Rowan S J. Supramolecular gels formed from multi-component low molecular weight species[J]. Chemical Society Reviews, 2012, 41(18): 6089-6102. |
53 | Terech P, Deme B, Aubouy M, et al. Self-assembled fibrillar networks —preface[J]. Langmuir, 2002, 18(19): 7095. |
54 | Brizard A, Stuart M, van Bommel K, et al. Preparation of nanostructures by orthogonal self-assembly of hydrogelators and surfactants[J]. Angewandte Chemie-International Edition, 2008, 47(11): 2063-2066. |
55 | Brizard A M, Stuart M C A, van Esch J H. Self-assembled interpenetrating networks by orthogonal self assembly of surfactants and hydrogelators[J]. Faraday Discussions, 2009, 143: 345-357. |
56 | Sugiyasu K, Kawano S I, Fujita N, et al. Self-sorting organogels with p-n heterojunction points[J]. Chemistry of Materials, 2008, 20(9): 2863-2865. |
57 | Moffat J R, Smith D K. Controlled self-sorting in the assembly of ‘multi-gelator gels[J]. Chemical Communications, 2009,(3): 316-318. |
58 | Morris K L, Chen L, Raeburn J, et al. Chemically programmed self-sorting of gelator networks[J]. Nature Communications, 2013, 4: 1-6. |
59 | Buendia J, Matesanz E, Smith D K, et al. Multi-component supramolecular gels for the controlled crystallization of drugs: synergistic and antagonistic effects[J]. CrystEngComm, 2015, 17(42): 8146-8152. |
60 | Draper E R, Adams D J. Low-molecular-weight gels: the state of the art[J]. Chem., 2017, 3(3): 390-410. |
61 | Raeburn J, Adams D J. Multicomponent low molecular weight gelators[J]. Chemical Communications, 2015, 51(25): 5170-5180. |
62 | Bloom S, Liu C, Kolmel D K, et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials[J]. Nature Chemistry, 2018, 10(2): 205-211. |
63 | Voorhaar L, Hoogenboom R. Supramolecular polymer networks: hydrogels and bulk materials[J]. Chemical Society Reviews, 2016, 45(14): 4013-4031. |
64 | Wang J R, Bao J, Fan X, et al. pH-switchable vitamin B-9 gels for stoichiometry-controlled spherical co-crystallization[J]. Chemical Communications, 2016, 52(92): 13452-13455. |
65 | Rahim M A, Hata Y, Bjornmalm M, et al. Supramolecular metal-phenolic gels for the crystallization of active pharmaceutical ingredients[J]. Small, 2018, 14(26):e1801202. |
66 | Lock L L, Lacomb M, Schwarz K, et al. Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures[J]. Faraday Discussions, 2013, 166: 285-301. |
67 | Xing P, Chu X, Ma M, et al. Supramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies[J]. Physical Chemistry Chemical Physics, 2014, 16(18): 8346-8359. |
68 | Chakraborty P, Roy B, Bairi P, et al. Improved mechanical and photophysical properties of chitosan incorporated folic acid gel possessing the characteristics of dye and metal ion absorption[J]. Journal of Materials Chemistry, 2012, 22(38): 20291-20298. |
69 | Tan D, Loots L, Friscic T. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs)[J]. Chemical Communications, 2016, 52(50): 7760-7781. |
70 | Rahim M A, Bjornmalm M, Suma T, et al. Metal-phenolic supramolecular gelation[J]. Angewandte Chemie-International Edition, 2016, 55(44): 13803-13807. |
71 | Conejero-Muriel M, Gavira J A, Pineda-Molina E, et al. Influence of the chirality of short peptide supramolecular hydrogels in protein crystallogenesis[J]. Chemical Communications, 2015, 51(18): 3862-3865. |
72 | Dawn A, Mirzamani M, Jones C D, et al. Investigating the effect of supramolecular gel phase crystallization on gel nucleation[J]. Soft Matter, 2018, 14(46): 9489-9497. |
73 | Gavira J A, van Driessche A E S, Garcia-Ruiz J M. Growth of ultrastable protein-silica composite crystals[J]. Crystal Growth & Design, 2013, 13(6): 2522-2529. |
74 | Garcia-Ruiz J M, Gavira J A, Otalora F, et al. Reinforced protein crystals[J]. Materials Research Bulletin, 1998, 33(11): 1593-1598. |
75 | Grassman O, Neder R B, Putnis A, et al. Biomimetic control of crystal assembly by growth in an organic hydrogel network[J]. American Mineralogist, 2003, 88(4): 647-652. |
76 | Li H, Estroff L A. Hydrogels coupled with self-assembled monolayers: an in vitro matrix to study calcite biomineralization[J]. Journal of the American Chemical Society, 2007, 129(17): 5480-5483. |
77 | Halberstadt E S, Henisch H K, Nickl J, et al. Gel structure and crystal nucleation[J]. Journal of Colloid and Interface Science, 1969, 29(3): 469-471. |
78 | Oaki Y, Hayashi S, Imai H. A hierarchical self-similar structure of oriented calcite with association of an agar gel matrix: inheritance of crystal habit from nanoscale[J]. Chemical Communications, 2007, (27): 2841-2843. |
79 | Diao Y, Helgeson M E, Myerson A S, et al. Controlled nucleation from solution using polymer microgels[J]. Journal of the American Chemical Society, 2011, 133(11): 3756-3759. |
80 | Dendukuri D, Gu S S, Pregibon D C, et al. Stop-flow lithography in a microfluidic device[J]. Lab on a Chip, 2007, 7(7): 818-828. |
81 | Diao Y, Helgeson M E, Siam Z A, et al. Nucleation under soft confinement: role of polymer-solute interactions[J]. Crystal Growth & Design, 2012, 12(1): 508-517. |
82 | Diao Y, Whaley K E, Helgeson M E, et al. Gel-induced selective crystallization of polymorphs[J]. Journal of the American Chemical Society, 2012, 134(1): 673-684. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[3] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[4] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[5] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[6] | Shiting XIE, Zhuang LIU, Rui XIE, Xiaojie JU, Wei WANG, Dawei PAN, Liangyin CHU. Study on preparation of poly(N-isopropylacrylamide-co-allylthiourea) smart microgels and responsive performance of Hg2+ [J]. CIESC Journal, 2023, 74(6): 2689-2698. |
[7] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[8] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[11] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[12] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[13] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[14] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
[15] | Wentao LI, Huijuan LIN, Hai ZHONG. LiF-rich SEI generated by in-situ gel polymer electrolyte process for lithium metal rechargeable batteries [J]. CIESC Journal, 2022, 73(7): 3240-3250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||