CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1254-1263.DOI: 10.11949/0438-1157.20190893
• Process system engineering • Previous Articles Next Articles
Yu HAN1,2,Junfang LI1,2,Qiang GAO1,2(),Yu TIAN1,2,Guogang YU2,3
Received:
2019-08-01
Revised:
2019-10-17
Online:
2020-03-05
Published:
2020-03-05
Contact:
Qiang GAO
韩宇1,2,李俊芳1,2,高强1,2(),田宇1,2,禹国刚2,3
通讯作者:
高强
基金资助:
CLC Number:
Yu HAN, Junfang LI, Qiang GAO, Yu TIAN, Guogang YU. Fault detection based on fault discrimination enhanced kernel entropy component analysis algorithm[J]. CIESC Journal, 2020, 71(3): 1254-1263.
韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263.
故障 | 故障描述 | 故障程度 | |
---|---|---|---|
训练集 | 测试集 | ||
D1 | 变量 | -0.40 | -0.38 |
D2 | 变量 | 0.01×(k-100) | 0.011×(k-100) |
Table 1 Numerical simulation fault setting
故障 | 故障描述 | 故障程度 | |
---|---|---|---|
训练集 | 测试集 | ||
D1 | 变量 | -0.40 | -0.38 |
D2 | 变量 | 0.01×(k-100) | 0.011×(k-100) |
故障 | KECA | FDKECA | ||||||
---|---|---|---|---|---|---|---|---|
T2 | Q | 情况1 | 情况2 | 情况3 | ||||
PT | PQ | PT | PQ | PT | PQ | |||
D1 | 15 | 5.5 | 84 | 7.5 | 45 | 10 | 85 | 10 |
D2 | 41 | 11 | 54.5 | 8.5 | 81.5 | 9 | 82.5 | 9 |
Table 2 Fault detection rate in three cases/%
故障 | KECA | FDKECA | ||||||
---|---|---|---|---|---|---|---|---|
T2 | Q | 情况1 | 情况2 | 情况3 | ||||
PT | PQ | PT | PQ | PT | PQ | |||
D1 | 15 | 5.5 | 84 | 7.5 | 45 | 10 | 85 | 10 |
D2 | 41 | 11 | 54.5 | 8.5 | 81.5 | 9 | 82.5 | 9 |
故障 | KPCA | KECA | KLNPDA | FDKECA | ||||
---|---|---|---|---|---|---|---|---|
T2 | Q | T2 | Q | T2 | Q | PT | PQ | |
1 | 99.8 | 99.0 | 99.8 | 99.5 | 99.7 | 99.2 | 100 | 100 |
2 | 98.4 | 2.6 | 98.4 | 98.8 | 98.6 | 98.5 | 99.8 | 100 |
3 | 3.2 | 2.8 | 6.4 | 12.6 | 46.2 | 45.5 | 65.2 | 61.8 |
4 | 98.9 | 84.0 | 95.3 | 93.5 | 96.2 | 91.2 | 99.3 | 98.8 |
5 | 30.8 | 17.0 | 36.5 | 94.3 | 42.7 | 43.7 | 43.6 | 94.3 |
6 | 99.6 | 50.0 | 99.8 | 100 | 100 | 99.3 | 100 | 100 |
7 | 100 | 77.8 | 100 | 99.9 | 100 | 99.8 | 100 | 100 |
8 | 99.0 | 31.4 | 97.6 | 97.7 | 99.5 | 97.6 | 99.3 | 99.0 |
9 | 3.7 | 3.8 | 17.5 | 19.1 | 64.2 | 45.6 | 89.6 | 52.7 |
10 | 47.8 | 60.8 | 66.7 | 60.8 | 63.7 | 59.6 | 74.0 | 72.5 |
11 | 69.1 | 66.2 | 57.1 | 67.7 | 74.3 | 67.6 | 75.1 | 72.5 |
12 | 99.0 | 34.8 | 97.5 | 99.2 | 99.7 | 96.5 | 99.7 | 99.7 |
13 | 95.0 | 12.8 | 92.8 | 95.5 | 95.7 | 95.1 | 95.7 | 95.8 |
14 | 99.9 | 37.1 | 100 | 99.7 | 100 | 100 | 100 | 100 |
15 | 8.9 | 1.1 | 7.1 | 13.1 | 66.2 | 38.7 | 85.1 | 47.3 |
16 | 31.1 | 54.1 | 58.5 | 51.0 | 62.7 | 40.8 | 74.5 | 63.3 |
17 | 93.5 | 33.2 | 75.1 | 80.1 | 90.1 | 89.5 | 98.6 | 93.8 |
18 | 90.0 | 2.3 | 91.1 | 92.1 | 91.8 | 92.0 | 93.0 | 93.3 |
19 | 6.0 | 13.4 | 17.6 | 19.8 | 20.0 | 14.6 | 28.3 | 28.8 |
20 | 58.4 | 47.6 | 59.1 | 58.6 | 63.5 | 69.0 | 68.0 | 73.2 |
21 | 40.0 | 43.5 | 48.0 | 45.3 | 57.0 | 51.6 | 57.7 | 54.2 |
Avg | 65.3 | 36.9 | 67.6 | 71.3 | 77.7 | 73.1 | 83.1 | 81.0 |
Table 3 Test results of TE process fault detection rate/%
故障 | KPCA | KECA | KLNPDA | FDKECA | ||||
---|---|---|---|---|---|---|---|---|
T2 | Q | T2 | Q | T2 | Q | PT | PQ | |
1 | 99.8 | 99.0 | 99.8 | 99.5 | 99.7 | 99.2 | 100 | 100 |
2 | 98.4 | 2.6 | 98.4 | 98.8 | 98.6 | 98.5 | 99.8 | 100 |
3 | 3.2 | 2.8 | 6.4 | 12.6 | 46.2 | 45.5 | 65.2 | 61.8 |
4 | 98.9 | 84.0 | 95.3 | 93.5 | 96.2 | 91.2 | 99.3 | 98.8 |
5 | 30.8 | 17.0 | 36.5 | 94.3 | 42.7 | 43.7 | 43.6 | 94.3 |
6 | 99.6 | 50.0 | 99.8 | 100 | 100 | 99.3 | 100 | 100 |
7 | 100 | 77.8 | 100 | 99.9 | 100 | 99.8 | 100 | 100 |
8 | 99.0 | 31.4 | 97.6 | 97.7 | 99.5 | 97.6 | 99.3 | 99.0 |
9 | 3.7 | 3.8 | 17.5 | 19.1 | 64.2 | 45.6 | 89.6 | 52.7 |
10 | 47.8 | 60.8 | 66.7 | 60.8 | 63.7 | 59.6 | 74.0 | 72.5 |
11 | 69.1 | 66.2 | 57.1 | 67.7 | 74.3 | 67.6 | 75.1 | 72.5 |
12 | 99.0 | 34.8 | 97.5 | 99.2 | 99.7 | 96.5 | 99.7 | 99.7 |
13 | 95.0 | 12.8 | 92.8 | 95.5 | 95.7 | 95.1 | 95.7 | 95.8 |
14 | 99.9 | 37.1 | 100 | 99.7 | 100 | 100 | 100 | 100 |
15 | 8.9 | 1.1 | 7.1 | 13.1 | 66.2 | 38.7 | 85.1 | 47.3 |
16 | 31.1 | 54.1 | 58.5 | 51.0 | 62.7 | 40.8 | 74.5 | 63.3 |
17 | 93.5 | 33.2 | 75.1 | 80.1 | 90.1 | 89.5 | 98.6 | 93.8 |
18 | 90.0 | 2.3 | 91.1 | 92.1 | 91.8 | 92.0 | 93.0 | 93.3 |
19 | 6.0 | 13.4 | 17.6 | 19.8 | 20.0 | 14.6 | 28.3 | 28.8 |
20 | 58.4 | 47.6 | 59.1 | 58.6 | 63.5 | 69.0 | 68.0 | 73.2 |
21 | 40.0 | 43.5 | 48.0 | 45.3 | 57.0 | 51.6 | 57.7 | 54.2 |
Avg | 65.3 | 36.9 | 67.6 | 71.3 | 77.7 | 73.1 | 83.1 | 81.0 |
1 | Alcala C F,Qin S J.Analysis and generalization of fault diagnosis methods for process monitoring[J].Journal of Process Control,2011,21(3):322-330. |
2 | Ge Z,Song Z,Gao F.Review of recent research on data-based process monitoring[J].Industrial & Engineering Chemistry Research,2013,52(10):3543-3562. |
3 | Gao Z,Cecati C,Ding S X.A survey of fault diagnosis and fault-tolerant techniques(I): Fault diagnosis with model-based and signal-based approaches[J].IEEE Transactions on Industrial Electronics,2015,62(6):3757-3767. |
4 | Agrawal V,Panigrahi B K,Subbarao P M V.Review of control and fault diagnosis methods applied to coal mills[J].Journal of Process Control,2015,32:138-153. |
5 | Liu Y,Pan Y,Wang Q,et al.Statistical process monitoring with integration of data projection and one-class classification[J].Chemometrics and Intelligent Laboratory Systems,2015,149:1-11. |
6 | Jenssen R.Kernel entropy component analysis[J].IEEE Trans Pattern Anal Mach Intell,2010,32(5):847-860. |
7 | 常鹏,乔俊飞,王普,等.基于MKECA的非高斯性和非线性共存的间歇过程监测[J].化工学报,2018,69(3):1200-1206. |
Chang P,Qiao J F,Wang P,et al.Monitoring non-Gaussian and non-linear batch process based on multi-way kernel entropy component analysis[J].CIESC Journal,2018,69(3):1200-1206. | |
8 | 齐咏生,张海利,王林,等.基于MSPCA-KECA的冷水机组故障监测及诊断[J].化工学报,2017,68(4):1499-1508. |
Qi Y S,Zhang H L,Wang L,et al.Fault detection and diagnosis for chillers using MSPCA-KECA[J].CIESC Journal,2017,68(4):1499-1508. | |
9 | He X B,Yang Y P,Yang Y H.Fault diagnosis based on variable-weighted kernel Fisher discriminant analysis[J].Chemometrics and Intelligent Laboratory Systems,2008,93(1):27-33. |
10 | Zhong S,Wen Q,Ge Z.Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes[J].Chemometrics and Intelligent Laboratory Systems,2014,138:203-211. |
11 | Zhu Z B,Song Z H.A novel fault diagnosis system using pattern classification on kernel FDA subspace[J].Expert Systems with Applications,2011,38(6):6895-6905. |
12 | Feng J,Wang J,Zhang H,et al.Fault diagnosis method of joint fisher discriminant analysis based on the local and global manifold learning and its kernel version[J].IEEE Transactions on Automation Science and Engineering,2016,13(1):122-133. |
13 | Jie Y.Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis[J].Industrial & Engineering Chemistry Research,2011,50(6):3390-3402. |
14 | Rong G,Liu S Y,Shao J D.Fault diagnosis by locality preserving discriminant analysis and its kernel variation[J].Computers & Chemical Engineering,2013,49:105-113. |
15 | Yu J.Local and nonlocal preserving projection for bearing defect classification and performance assessment[J].IEEE Transactions on Industrial Electronics,2012,59(5):2363-2376. |
16 | Shao W,Tian X,Wang P.Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor[J].Chinese Journal of Chemical Engineering,2015,23(12):1925-1934. |
17 | Yu J,Lu X.Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis[J].IEEE Transactions on Semiconductor Manufacturing,2016,29(1):33-43. |
18 | Tishon A,Oldstone M B.Perturbation of differentiated functions during viral infectionin vivo.In vivo relationship of host genes and lymphocytic choriomeningitis virus to growth hormone deficiency[J].Virology,1990,142(1):158-174. |
19 | 秦家祥.基于KECA的非线性故障检测[D].杭州:浙江大学,2017. |
Qin J X.Nonlinear fault detection based on KECA[D].Hangzhou:Zhejiang University,2017. | |
20 | He X,Yan S,Hu Y,et al.Face recognition using laplacian faces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340. |
21 | Yang J,Zhang D,Yang J Y.Non-locality preserving projection and its application to palmprint recognition[C]//The 9th IEEE International Conference on Control,Automation, Robotics and Vision,2007:1-4. |
22 | Lee J M,Yoo C K,Choi S W,et al.Nonlinear process monitoring using kernel principal component analysis[J].Chemical Engineering Science,2004,59(1):223-234. |
23 | Lee J M,Yoo C K,Lee I B.Fault detection of batch processes using multiway kernel principal component analysis[J].Computers & Chemical Engineering,2004,28(9):1837-1847. |
24 | Deng X,Tian X,Chen S.Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis[J].Chemometrics and Intelligent Laboratory Systems,2013,127:195-209. |
25 | Hong X,Chen S,Harris C J.A forward-constrained regression algorithm for sparse kernel density estimation[J].IEEE Transactions on Neural Networks,2008,19(1):193-198. |
26 | Hong X,Gao J,Chen S,et al.Sparse density estimation on the multinomial manifold[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(11):2972-2977. |
27 | Deng X,Tian X,Chen S,et al.Fault discriminant enhanced kernel principal component analysis incorporating prior fault information for monitoring nonlinear processes[J].Chemometrics and Intelligent Laboratory Systems,2017,162:21-34. |
28 | Zhang H,Qi Y,Wang L,et al.Fault detection and diagnosis of chemical process using enhanced KECA[J].Chemometrics and Intelligent Laboratory Systems,2017,161:61-69. |
29 | Bernal-de-Lázaro J M,Llanes-Santiago O,Prieto-Moreno A,et al.Enhanced dynamic approach to improve the detection of small-magnitude faults[J].Chemical Engineering Science,2016,14:166-179. |
30 | 薄翠梅,韩晓春,易辉,等.基于聚类选择 k近邻的 LLE算法及故障检测[J].化工学报,2016,67(3):925-930. |
Bo C M,Han X C,Yi H,et al.Neighborhood selection of LLEbased on cluster for fault detection[J].CIESC Journal,2016,67(3):925-930. | |
31 | Downs J J,Vogel E F.A plant-wide industrial process control problem[J].Computers & Chemical Engineering,1993,17(3):245-255. |
32 | Ye N,Mcavoy T J,Kosanovich K A,et al.Plant-wide control using an inferential approach[C]//American Control Conference.IEEE,2009. |
33 | Huang J,Yan X.Relevant and independent multi-block approach for plant-wide process and quality-related monitoring based on KPCA and SVDD[J].ISA Transactions,2018,73:257-267. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[5] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[8] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[11] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[12] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[13] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[14] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[15] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 422
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||