CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1131-1142.DOI: 10.11949/0438-1157.20190978

• Process system engineering • Previous Articles     Next Articles

Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems

Jing WANG1(),Lixia KANG1,2,Yongzhong LIU1,2,3()   

  1. 1. Department of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2. Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi’an 710049, Shaanxi, China
    3. Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an 710049, Shaanxi, China
  • Received:2019-08-26 Revised:2019-10-30 Online:2020-03-05 Published:2020-03-05
  • Contact: Yongzhong LIU

化工系统消纳可再生能源的电-氢协调储能系统优化设计

王靖1(),康丽霞1,2,刘永忠1,2,3()   

  1. 1. 西安交通大学化工系, 陕西 西安 710049
    2. 陕西省能源化工过程强化重点实验室, 陕西 西安 710049
    3. 热流科学与工程教育部重点实验室, 陕西 西安 710049
  • 通讯作者: 刘永忠
  • 作者简介:王靖(1995—),女,博士研究生,wjjycg0916@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21878240);中国博士后基金项目(2018M633518);陕西省重点研发计划项目(2018GY-072)

Abstract:

To coordinate and match fluctuations of hydrogen demand in chemical production systems with the intermittent and variability of renewable energy, an optimization model for the electricity-hydrogen energy storage system coupled with a renewable energy system and a hydrogenation system in the chemical production systems was established, aiming to minimize the total cost of the energy storage system and to determine the optimal capacity configuration and power dispatching scheme of the system. The design and operation characteristics of the energy storage system were analyzed and discussed under the different configuration of the system and the penetration rate of renewable energy. The results show that when the hydrogen demand of the chemical production system is completely satisfied by the renewable energy, the energy storage combined by battery system and hydrogen tanks can effectively reduce the total cost of the system. In the electricity-hydrogen storage system, the configuration of the battery can effectively reduce the maximum load of the electrolyzer. The battery is used to stabilize fluctuations in the supply and demand in a short term, whereas the hydrogen tank is used to cope with mismatches between the supply and demand in a long-term. The total cost of the system increases dramatically with the increase of the penetration rate of renewable energy. To maintain the stability of the purchased hydrogen flow rate, the capacity of the electrolytic cell and the energy storage system needs to be increased in the system to solve the fluctuation and mismatch between the power generation side and the load side.

Key words: chemical process system, renewable energy, battery, hydrogen storage, integration, optimal design

摘要:

针对可再生能源发电间歇性和波动性与化工过程系统氢气需求波动性协调匹配的问题,本文以电-氢储能系统总费用最小为目标,建立了可再生能源发电与化工生产中加氢系统耦合的电-氢协调储能系统优化设计模型,以确定电-氢协调储能系统的最优容量配置和功率调度方案。采用典型案例研究了可再生能源渗透率和电-氢储能系统构成对电-氢储能优化设计和运行特性的影响。研究表明:当化工系统的氢气需求全部由可再生能源发电制氢提供时,在系统中同时采用电池和氢气储罐储能可有效地降低系统的总费用;在该系统中,电池可用于平抑短期内发电侧和负荷侧的波动,氢气储罐可平衡发电侧和负荷侧长期的不匹配;随着可再生能源渗透率的增加,系统的总费用显著增大;为了维持外购氢气流率的稳定,系统中需要增加电解槽和储能系统的容量以解决发电侧和负荷侧的波动和不匹配问题。

关键词: 化工系统, 可再生能源, 电池, 储氢, 集成, 优化设计

CLC Number: