1 |
Anthony C, James D. Initial feasibility assessment of a high-altitude long endurance airship: report of National Aeronautics and Space Administration [R]. Ohio: NASA, 2003.
|
2 |
Lee M, Smith S, Androulakakis S. The high-altitude lighter than air airship efforts at the US Army Space and Missile Defense Command/Army Forces Strategic Command [C]//AIAA. 18th AIAA Lighter-than-air Systems Technology Conference. Seattle, Washington: American Institute of Aeronautics and Astronautics,2009: 1-26.
|
3 |
Ü Kunsel I, Ü Deniz. A low cost alternative for satellites-tethered ultra-high altitude balloons [C]// IEEE. Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011. Istanbal, Turkey: Institute of Electrical and Electronics Engineers, 2011: 13-16.
|
4 |
Santapietro J J. Persistent wide area surveillance from an airship [J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(6): 11-16.
|
5 |
Keim N, Samsundar J, Barton J. Senior design project: low-altitude unmanned reconnaissance airship (LAURA) [J]. Johns Hopkins Applied Technical Digest, 2010, 28(3): 276-277.
|
6 |
王柏林, 杨加春, 郭虓. 基于平流层飞艇的气象探测技术探索[J]. 气象科技进展, 2019, 9(4): 6-13.
|
|
Wang B L, Yang J C, Guo X. Study of meteorological observation technology based on stratospheric airship [J]. Advances in Meteorological Science and Technology, 2019, 9(4): 6-13.
|
7 |
彭桂林, 万志强. 中国浮空器遥感遥测应用现状与展望[J]. 地球信息科学学报, 2019, 21(4): 504-511.
|
|
Peng G L, Wan Z Q. The present situation and prospect of aerostat applied to remote sensing and remote survey in China [J]. Journal of Geo-information Science, 2019, 21(4): 504-511.
|
8 |
武江涛, 麻震宇, 侯中喜, 等. 平流层飞艇强迫对流特性数值仿真分析[J]. 国防科技大学学报, 2016, 38(2): 177-182.
|
|
Wu J T, Ma Z Y, Hou Z X, et al. Numerical research on forced convective heat transfer of stratospheric airship [J]. Journal of National University of Defense Technology, 2016, 38(2): 177-182.
|
9 |
Vliet G C, Leppert G. Forced convection heat transfer from an isothermal sphere to water [J]. Journal of Heat Transfer, 1961, 83(2): 163-163.
|
10 |
Yao W, Lu X, Wang C, et al. A heat transient model for the thermal behavior prediction of stratospheric airships [J]. Applied Thermal Engineering, 2014, 70(1): 380-387.
|
11 |
Shi H, Geng S S, Qian X H, et al. Thermodynamics analysis of a stratospheric airship with hovering capability [J]. Applied Thermal Engineering, 2019, 146: 600-607.
|
12 |
Will J B, Kruyt N P, Venner C H. An experimental study of forced convective heat transfer from smooth, solid spheres [J]. International Journal of Heat & Mass Transfer, 2017, 109: 1059-1067.
|
13 |
Kreith F, Kreider J F. Numerical prediction of the performance of high-altitude balloons: report of NCAR [R]. Colorado: NCAR, 1974.
|
14 |
Carlson L A, Horn W J. New thermal and trajectory model for high-altitude balloons [J]. Journal of Aircraft, 1983, 20(6): 500-507.
|
15 |
方贤德, 王伟志, 李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感, 2007, 28(2): 5-9.
|
|
Fang X D, Wang W Z, Li X J. A study of thermal simulation of stratospheric airships [J]. Spacecraft Recovery & Remote Sensing, 2007, 28(2): 5-9.
|
16 |
Whitaker S. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles [J]. AIChE Journal, 1972, 18(2): 361-371.
|
17 |
Dai Q M, Fang X D, Xu Y. Numerical study of forced convective heat transfer around a spherical aerostat [J]. Advances in Space Research, 2013, 52(12): 2199-2203.
|
18 |
Dai Q M, Fang X D. Numerical study of forced convective heat transfer around airships [J]. Advances in Space Research, 2016, 57(3): 776-781.
|
19 |
Li H, Rong L, Zong C, et al. A numerical study on forced convective heat transfer of a chicken (model) in horizontal airflow [J]. Biosystems Engineering, 2016, 150: 151-159.
|
20 |
Kishore N, Gu S. Momentum and heat transfer phenomena of spheroid particles at moderate Reynolds and Prandtl numbers [J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2595-2601.
|
21 |
Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables part1-model formulation [C]// ASME Turbo Expo. Power for Land, Sea, and Air. Vienna, Austria: Proceedings of ASME Turbo Expo, 2004: 413-422.
|
22 |
Langtry R B, Menter F R, Likki S R, et al. A correlation-based transition model using local variables(Ⅱ): Test cases and industrial applications [J]. ASME J. Turbomach., 2006, 128(3): 423-434.
|
23 |
Amchenbach E. Experiments on the flow past spheres at very high Reynolds numbers [J]. Fluid Mech., 1972, 54(3): 565-575.
|