CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3151-3164.DOI: 10.11949/0438-1157.20191139
• Process system engineering • Previous Articles Next Articles
Xianyi YU1(),Jianghong WU1(),Yunhui GAO2
Received:
2019-10-08
Revised:
2019-12-24
Online:
2020-07-05
Published:
2020-07-05
Contact:
Jianghong WU
通讯作者:
巫江虹
作者简介:
于仙毅(1994—),男,硕士研究生,基金资助:
CLC Number:
Xianyi YU, Jianghong WU, Yunhui GAO. Research on refrigerant leakage identification for heat pump system based on PCA-SVM models[J]. CIESC Journal, 2020, 71(7): 3151-3164.
于仙毅, 巫江虹, 高云辉. 基于主成分分析与支持向量机的热泵系统制冷剂泄漏识别研究[J]. 化工学报, 2020, 71(7): 3151-3164.
Add to citation manager EndNote|Ris|BibTeX
系统 | 部件 | 规格型号 |
---|---|---|
制冷循环系统 | 压缩机 | BSA645CV-R1EN型 R134a制冷剂 |
冷凝器 | U型套管式 | |
节流阀 | 丹佛斯TN2型热力膨胀阀 | |
蒸发器(含小型风扇组) | 单流层微通道换热器 | |
水路循环系统 | 保温水箱 | 30 L、?20 mm进出水口 |
水泵 | 1个 自吸式磁力循环泵 | |
水流量计 | 1个 LWGY型涡轮流量计 | |
制冷剂泄漏控制及收集部件 | 手阀 | 4个 |
开度阀 | 4个 | |
气体收集袋 | 1个 20 L超高密封袋 | |
测试部件 | 热电偶 | 若干 J型热电偶 |
压力变送器 | 8个 0~0.6 MPa、0~4 MPa | |
电子秤 | 100 g/0.02 g 15 kg/0.2 g | |
功率仪 | 1个 HOPI型 | |
安捷伦 | 1台 34972型 | |
计算机 | 1台 |
Table 1 Refrigerant leak test system component information
系统 | 部件 | 规格型号 |
---|---|---|
制冷循环系统 | 压缩机 | BSA645CV-R1EN型 R134a制冷剂 |
冷凝器 | U型套管式 | |
节流阀 | 丹佛斯TN2型热力膨胀阀 | |
蒸发器(含小型风扇组) | 单流层微通道换热器 | |
水路循环系统 | 保温水箱 | 30 L、?20 mm进出水口 |
水泵 | 1个 自吸式磁力循环泵 | |
水流量计 | 1个 LWGY型涡轮流量计 | |
制冷剂泄漏控制及收集部件 | 手阀 | 4个 |
开度阀 | 4个 | |
气体收集袋 | 1个 20 L超高密封袋 | |
测试部件 | 热电偶 | 若干 J型热电偶 |
压力变送器 | 8个 0~0.6 MPa、0~4 MPa | |
电子秤 | 100 g/0.02 g 15 kg/0.2 g | |
功率仪 | 1个 HOPI型 | |
安捷伦 | 1台 34972型 | |
计算机 | 1台 |
工况类型 | 工况详情及引入方法 |
---|---|
正常工况(normal) | 系统开机后,恒定30℃水温,系统稳定运行 |
泄漏工况(Refleak) | 以正常工况为基准,在其开机平稳运行一小段时间后,系统趋于稳定的一个时间点作为泄漏工况的开始点,开始控制泄漏口阀门开度 |
冷凝器脏污工况(ReduCF) | 调节冷凝器水泵,降低冷凝器水流量 |
蒸发器脏污工况(ReduEF) | 通过遮挡蒸发器,降低蒸发器换热面积 |
热力膨胀阀预紧力过小工况(loosTV) | 人为调松热力膨胀阀预紧弹簧 |
热力膨胀阀预紧力过大工况(ClosTV) | 人为调紧热力膨胀阀预紧弹簧 |
冷凝温度变化工况(IncrTW)(DecrTW) | 分别恒定6号大水箱内的水温为25℃和35℃ |
Table 2 Test conditions of the heat pump system with constant water temperature
工况类型 | 工况详情及引入方法 |
---|---|
正常工况(normal) | 系统开机后,恒定30℃水温,系统稳定运行 |
泄漏工况(Refleak) | 以正常工况为基准,在其开机平稳运行一小段时间后,系统趋于稳定的一个时间点作为泄漏工况的开始点,开始控制泄漏口阀门开度 |
冷凝器脏污工况(ReduCF) | 调节冷凝器水泵,降低冷凝器水流量 |
蒸发器脏污工况(ReduEF) | 通过遮挡蒸发器,降低蒸发器换热面积 |
热力膨胀阀预紧力过小工况(loosTV) | 人为调松热力膨胀阀预紧弹簧 |
热力膨胀阀预紧力过大工况(ClosTV) | 人为调紧热力膨胀阀预紧弹簧 |
冷凝温度变化工况(IncrTW)(DecrTW) | 分别恒定6号大水箱内的水温为25℃和35℃ |
序号 | 变量 符号 | 变量名称 | 意义 |
---|---|---|---|
1 | Tci1 | 冷凝器进口温度1 | 测点温度 |
2 | Tci2 | 冷凝器进口温度2 | 测点温度 |
3 | Tci3 | 冷凝器进口温度3 | 测点温度 |
4 | Tci4 | 冷凝器进口温度4 | 测点温度 |
5 | Tci5 | 冷凝器进口温度5 | 测点温度 |
6 | Tco1 | 冷凝器出口温度1 | 测点温度 |
7 | Tco2 | 冷凝器出口温度2 | 测点温度 |
8 | Tco3 | 冷凝器出口温度3 | 测点温度 |
9 | Tco4 | 冷凝器出口温度4 | 测点温度 |
10 | Tco5 | 冷凝器出口温度5 | 测点温度 |
11 | Tei1 | 蒸发器进口温度1 | 测点温度 |
12 | Tei2 | 蒸发器进口温度2 | 测点温度 |
13 | Tei3 | 蒸发器进口温度3 | 测点温度 |
14 | Tei4 | 蒸发器进口温度4 | 测点温度 |
15 | Tei5 | 蒸发器进口温度5 | 测点温度 |
16 | Teo1 | 蒸发器出口温度1 | 测点温度 |
17 | Teo2 | 蒸发器出口温度2 | 测点温度 |
18 | Teo3 | 蒸发器出口温度3 | 测点温度 |
19 | Teo4 | 蒸发器出口温度4 | 测点温度 |
20 | Teo5 | 蒸发器出口温度5 | 测点温度 |
21 | Tesu | 蒸发器风冷出口环温 | 蒸发端环境温度 |
22 | Twat | 水箱水温 | 冷凝端环境温度 |
23 | POcom | 压缩机耗功 | 系统输入耗功 |
24 | Tesub | 过热度 | Teo1-Tgsat |
25 | Tcsub | 过冷度 | Tlsat-Tco1 |
26 | P01 | 压缩机出口压力 | 压力测点 |
27 | P02 | 冷凝器进口压力 | 压力测点 |
28 | P03 | 冷凝器出口压力 | 压力测点 |
29 | P04 | 节流阀入口压力 | 压力测点 |
30 | P05 | 节流阀出口压力 | 压力测点 |
31 | P06 | 蒸发器进口压力 | 压力测点 |
32 | P07 | 蒸发器出口压力 | 压力测点 |
33 | P08 | 压缩机进口压力 | 压力测点 |
34 | ΔTcom | 压缩机进出口温差 | Tci1-Teo5 |
35 | ΔTcon | 冷凝器进出口温差 | Tci5-Tco1 |
36 | ΔTvel | 节流阀温差 | Tco5-Tei1 |
37 | ΔPcom | 压缩机进出口压差 | P01-P08 |
38 | ΔPcon | 冷凝器进出口压差 | P02-P03 |
39 | ΔPvel | 节流阀压差 | P04-P05 |
40 | ΔPeva | 蒸发器进出口压差 | P06-P07 |
41 | ΔHcon | 冷凝器进出口焓差 | Hci-Hco |
Table 3 Name symbols of characteristic variables and their corresponding system representation meanings
序号 | 变量 符号 | 变量名称 | 意义 |
---|---|---|---|
1 | Tci1 | 冷凝器进口温度1 | 测点温度 |
2 | Tci2 | 冷凝器进口温度2 | 测点温度 |
3 | Tci3 | 冷凝器进口温度3 | 测点温度 |
4 | Tci4 | 冷凝器进口温度4 | 测点温度 |
5 | Tci5 | 冷凝器进口温度5 | 测点温度 |
6 | Tco1 | 冷凝器出口温度1 | 测点温度 |
7 | Tco2 | 冷凝器出口温度2 | 测点温度 |
8 | Tco3 | 冷凝器出口温度3 | 测点温度 |
9 | Tco4 | 冷凝器出口温度4 | 测点温度 |
10 | Tco5 | 冷凝器出口温度5 | 测点温度 |
11 | Tei1 | 蒸发器进口温度1 | 测点温度 |
12 | Tei2 | 蒸发器进口温度2 | 测点温度 |
13 | Tei3 | 蒸发器进口温度3 | 测点温度 |
14 | Tei4 | 蒸发器进口温度4 | 测点温度 |
15 | Tei5 | 蒸发器进口温度5 | 测点温度 |
16 | Teo1 | 蒸发器出口温度1 | 测点温度 |
17 | Teo2 | 蒸发器出口温度2 | 测点温度 |
18 | Teo3 | 蒸发器出口温度3 | 测点温度 |
19 | Teo4 | 蒸发器出口温度4 | 测点温度 |
20 | Teo5 | 蒸发器出口温度5 | 测点温度 |
21 | Tesu | 蒸发器风冷出口环温 | 蒸发端环境温度 |
22 | Twat | 水箱水温 | 冷凝端环境温度 |
23 | POcom | 压缩机耗功 | 系统输入耗功 |
24 | Tesub | 过热度 | Teo1-Tgsat |
25 | Tcsub | 过冷度 | Tlsat-Tco1 |
26 | P01 | 压缩机出口压力 | 压力测点 |
27 | P02 | 冷凝器进口压力 | 压力测点 |
28 | P03 | 冷凝器出口压力 | 压力测点 |
29 | P04 | 节流阀入口压力 | 压力测点 |
30 | P05 | 节流阀出口压力 | 压力测点 |
31 | P06 | 蒸发器进口压力 | 压力测点 |
32 | P07 | 蒸发器出口压力 | 压力测点 |
33 | P08 | 压缩机进口压力 | 压力测点 |
34 | ΔTcom | 压缩机进出口温差 | Tci1-Teo5 |
35 | ΔTcon | 冷凝器进出口温差 | Tci5-Tco1 |
36 | ΔTvel | 节流阀温差 | Tco5-Tei1 |
37 | ΔPcom | 压缩机进出口压差 | P01-P08 |
38 | ΔPcon | 冷凝器进出口压差 | P02-P03 |
39 | ΔPvel | 节流阀压差 | P04-P05 |
40 | ΔPeva | 蒸发器进出口压差 | P06-P07 |
41 | ΔHcon | 冷凝器进出口焓差 | Hci-Hco |
名称 | 表达式 | 参数 |
---|---|---|
线性核 | ||
多项式核 | ||
高斯核 | ||
拉普拉斯核 | ||
Sigmoid核 |
Table 4 SVM model expressions and parameters of different kernel function types
名称 | 表达式 | 参数 |
---|---|---|
线性核 | ||
多项式核 | ||
高斯核 | ||
拉普拉斯核 | ||
Sigmoid核 |
真实结果 | 识别结果 | |
---|---|---|
泄漏 | 非泄漏 | |
泄漏 | TP | FN |
非泄露 | FP | TN |
Table 5 Confusion matrix of binary classification results
真实结果 | 识别结果 | |
---|---|---|
泄漏 | 非泄漏 | |
泄漏 | TP | FN |
非泄露 | FP | TN |
评价指标 | 定义 | 计算公式 | |
---|---|---|---|
按类性能 | 命中率TPR | 对于给定类,发生且正确预测的样本占总发生样本的比率 | |
虚警率FPR | 对于给定类,没发生但被预测为发生的样本占没发生样本总数的比率 | ||
总体性能 | 准确率Acc | 正确分类数占总样本数的比率 | |
错误分类率Mcr | 错误分类样本数占总样本数的比率 |
Table 6 Leak identification model rating evaluation index and its definition
评价指标 | 定义 | 计算公式 | |
---|---|---|---|
按类性能 | 命中率TPR | 对于给定类,发生且正确预测的样本占总发生样本的比率 | |
虚警率FPR | 对于给定类,没发生但被预测为发生的样本占没发生样本总数的比率 | ||
总体性能 | 准确率Acc | 正确分类数占总样本数的比率 | |
错误分类率Mcr | 错误分类样本数占总样本数的比率 |
主元编号 | 特征值 | 主元方差贡献率/% | 累计方差贡献率/% | Tci1 | Tci2 | Tci3 | Tci4 | … | ΔPvel | ΔPeva | ΔHcon | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15.80 | 38.55 | 38.55 | 0.052 | 0.220 | 0.246 | -0.135 | … | -0.289 | 0.249 | 0.112 | |
2 | 9.64 | 23.51 | 62.06 | 0.048 | 0.213 | 0.253 | -0.143 | … | -0.000 | 0.000 | -0.000 | |
3 | 7.12 | 17.36 | 79.42 | 0.048 | 0.216 | 0.250 | -0.142 | … | -0.000 | 0.000 | -0.000 | |
4 | 3.12 | 7.61 | 87.03 | 0.045 | 0.213 | 0.254 | -0.145 | … | 0.000 | 0.000 | 0.000 | |
5 | 2.37 | 5.78 | 92.81 | 0.034 | 0.216 | 0.254 | -0.148 | … | -0.121 | 0.312 | 0.446 | |
6 | 0.82 | 2.01 | 94.82 | -0.173 | 0.214 | -0.072 | 0.036 | … | 0.054 | -0.140 | -0.200 | |
7 | 0.71 | 1.74 | 96.56 | -0.208 | 0.157 | -0.052 | 0.036 | … | -0.000 | -0.000 | -0.000 | |
… | … | … | … | … | … | … | … | … | … | … | … |
Table 7 Principal component analysis results of leakage characteristics
主元编号 | 特征值 | 主元方差贡献率/% | 累计方差贡献率/% | Tci1 | Tci2 | Tci3 | Tci4 | … | ΔPvel | ΔPeva | ΔHcon | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15.80 | 38.55 | 38.55 | 0.052 | 0.220 | 0.246 | -0.135 | … | -0.289 | 0.249 | 0.112 | |
2 | 9.64 | 23.51 | 62.06 | 0.048 | 0.213 | 0.253 | -0.143 | … | -0.000 | 0.000 | -0.000 | |
3 | 7.12 | 17.36 | 79.42 | 0.048 | 0.216 | 0.250 | -0.142 | … | -0.000 | 0.000 | -0.000 | |
4 | 3.12 | 7.61 | 87.03 | 0.045 | 0.213 | 0.254 | -0.145 | … | 0.000 | 0.000 | 0.000 | |
5 | 2.37 | 5.78 | 92.81 | 0.034 | 0.216 | 0.254 | -0.148 | … | -0.121 | 0.312 | 0.446 | |
6 | 0.82 | 2.01 | 94.82 | -0.173 | 0.214 | -0.072 | 0.036 | … | 0.054 | -0.140 | -0.200 | |
7 | 0.71 | 1.74 | 96.56 | -0.208 | 0.157 | -0.052 | 0.036 | … | -0.000 | -0.000 | -0.000 | |
… | … | … | … | … | … | … | … | … | … | … | … |
SVM模型编号 | 名称 | 意义 |
---|---|---|
1 | Linear SVM | 线性核函数 |
2 | Quadratic SVM | 二次多项式核函数 d=2 |
3 | Cubic SVM | 三次多项式核函数 d=3 |
4 | Fine Gaussian SVM | 精细高斯核函数 |
5 | Medium Gaussian SVM | 中位高斯核函数 |
6 | Coarse Gaussisn SVM | 粗糙高斯核函数 |
Table 8 SVM model information of different kernel function types
SVM模型编号 | 名称 | 意义 |
---|---|---|
1 | Linear SVM | 线性核函数 |
2 | Quadratic SVM | 二次多项式核函数 d=2 |
3 | Cubic SVM | 三次多项式核函数 d=3 |
4 | Fine Gaussian SVM | 精细高斯核函数 |
5 | Medium Gaussian SVM | 中位高斯核函数 |
6 | Coarse Gaussisn SVM | 粗糙高斯核函数 |
CPVa | 主元组合 | SVM核函数 | Acc/% | Mcr/% | TPR/% | FPR/% | 测试集混淆矩阵 |
---|---|---|---|---|---|---|---|
87.02% | [1,2,3,4] | Fine Gaussian SVM | 100 | 0 | 99.5 | 0 |
Table 9 PCA-SVM leak identification model and performance
CPVa | 主元组合 | SVM核函数 | Acc/% | Mcr/% | TPR/% | FPR/% | 测试集混淆矩阵 |
---|---|---|---|---|---|---|---|
87.02% | [1,2,3,4] | Fine Gaussian SVM | 100 | 0 | 99.5 | 0 |
工况 | Model-o | Model-pca4 |
---|---|---|
Refleak normal ReduCF ReduEF loosTV ClosTV IncrTW DecrTW | ||
工况 | Model-pca5 | Model-pca6 |
Refleak normal ReduCF ReduEF loosTV ClosTV IncrTW DecrTW | ||
工况 | Model-pca7 | |
Refleak normal ReduCF ReduEF loosTV ClosTV IncrTW DecrTW |
Table 10 Confusion matrix of different models in each fault diagnosis identification
工况 | Model-o | Model-pca4 |
---|---|---|
Refleak normal ReduCF ReduEF loosTV ClosTV IncrTW DecrTW | ||
工况 | Model-pca5 | Model-pca6 |
Refleak normal ReduCF ReduEF loosTV ClosTV IncrTW DecrTW | ||
工况 | Model-pca7 | |
Refleak normal ReduCF ReduEF loosTV ClosTV IncrTW DecrTW |
工况 | Model-pca4 | Model-pca5 | Model-pca6 | Model-pca7 |
---|---|---|---|---|
Refleak_slow Refleak_fast normal |
Table 11 Confusion matrix of leakage diagnosis and identification results of four models in the same data set
工况 | Model-pca4 | Model-pca5 | Model-pca6 | Model-pca7 |
---|---|---|---|---|
Refleak_slow Refleak_fast normal |
方式 | 序号 | 主元组合 | SVM核函数 | Acc/% | Mcr/% | TPR/% | FPR/% | 测试集混淆矩阵 |
---|---|---|---|---|---|---|---|---|
PCA-SVM | 1 | [ | Fine Gaussian SVM | 100 | 0 | 99.5 | 0 | |
2 | [ | 100 | 0 | 99.5 | 0 | |||
3 | [ | 99.1 | 0.9 | 97.6 | 0.2 | |||
RefliefF PCA-SVM | 4 | [1r,2r,3r,4r] | Fine Gaussian SVM | 97.8 | 2.2 | 97.1 | 1.8 | |
5 | [1r,2r,3r,4r,5r] | 97.4 | 2.6 | 95.6 | 1.8 | |||
6 | [1r,2r,3r,4r,5r,6r] | 97.4 | 2.6 | 93.7 | 0.9 |
Table 12 Comparison of PCA-SVM leak identification model and performance results before and after RefliefF FS
方式 | 序号 | 主元组合 | SVM核函数 | Acc/% | Mcr/% | TPR/% | FPR/% | 测试集混淆矩阵 |
---|---|---|---|---|---|---|---|---|
PCA-SVM | 1 | [ | Fine Gaussian SVM | 100 | 0 | 99.5 | 0 | |
2 | [ | 100 | 0 | 99.5 | 0 | |||
3 | [ | 99.1 | 0.9 | 97.6 | 0.2 | |||
RefliefF PCA-SVM | 4 | [1r,2r,3r,4r] | Fine Gaussian SVM | 97.8 | 2.2 | 97.1 | 1.8 | |
5 | [1r,2r,3r,4r,5r] | 97.4 | 2.6 | 95.6 | 1.8 | |||
6 | [1r,2r,3r,4r,5r,6r] | 97.4 | 2.6 | 93.7 | 0.9 |
1 | Mohanraj M, Muraleedharan C, Jayaraj S. A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units[J]. International Journal of Energy Research, 2011, 35(8): 647-669. |
2 | 王晓明. 制冷系统故障先兆分析和故障预报技术研究[D]. 上海: 上海交通大学, 1998. |
Wang X M. Analysis of refrigeration system failure predication and failure prediction technology [D]. Shanghai: Shanghai Jiaotong University, 1998. | |
3 | Koronaki I P, Cowan D, Maidment G, et al. Refrigerant emissions and leakage prevention across Europe-results from the RealSkillsEurope project[J]. Energy, 2012, 45(1): 71-80. |
4 | Francis C, Maidment G, Davies G. An investigation of refrigerant leakage in commercial refrigeration[J]. International Journal of Refrigeration, 2017, 74: 12-21. |
5 | Cowan D, Maidment G, Churchyard B, et al. Maintenance and long-term operation of supermarkets and minimizing refrigerant leakage[M]// Sustainable Retail Refrigeration. New York: John Wiley & Sons Ltd., 2015: 14-20. |
6 | Chantant M, Lambert R, Gargiulo L, et al. Leak tightness tests on actively cooled plasma facing components: lessons learned from Tore Supra experience and perspectives for the new fusion machines[J]. Fusion Engineering & Design, 2015, 98: 92-96. |
7 | Tassou S A, Grace I N. Fault diagnosis and refrigerant leak detection in vapour compression refrigeration systems[J]. International Journal of Refrigeration, 2005, 28(5): 680-688. |
8 | 任能. 制冷系统故障检测、诊断及预测研究[D]. 上海: 上海交通大学, 2008. |
Ren N. Fault detection, diagnosis and prediction of refrigeration system [D]. Shanghai: Shanghai Jiaotong University, 2008. | |
9 | Beshr M, Aute V, Sharma V, et al. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants[J]. International Journal of Refrigeration, 2015, 56: 154-164. |
10 | Coulomb D. Refrigeration and cold chain serving the global food industry and creating a better future: two key IIR challenges for improved health and environment[J]. Trends in Food Science & Technology, 2008, 19(8): 409-417. |
11 | 郭军峰. 汽车空调性能衰减研究[D].重庆: 重庆大学, 2012. |
Guo J F. Research on performance attenuation of automobile air conditioner [D]. Chongqing: Chongqing University, 2012. | |
12 | Yoo J W, Hong S B, Kim M S. Refrigerant leakage detection in an EEV installed residential air conditioner with limited sensor installations[J]. International Journal of Refrigeration, 2017, 78: 157-165. |
13 | Yu Y, Woradechjumroen D, Yu D. A review of fault detection and diagnosis methodologies on air-handling units[J]. Energy and Buildings, 2014, 82: 550-562. |
14 | Grace I N, Datta D, Tassou S A. Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection[J]. Applied Thermal Engineering, 2005, 25(4): 557-566. |
15 | Grace I N, Datta D, Tassou S A. Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection[J]. Applied Thermal Engineering, 2005, 25(4): 557-566. |
16 | Yoon S H, Payne W V, Domanski P A. Residential heat pump heating performance with single faults imposed[J]. Applied Thermal Engineering, 2011, 31(5): 765-771. |
17 | Han H, Gu B, Wang T, et al. Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning[J]. International Journal of Refrigeration, 2011, 34(2): 586-599. |
18 | Han H, Cao Z, Gu B, et al. PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems[J]. HVAC&R Research, 2010, 16(3): 295-313. |
19 | 齐咏生, 张海利, 王林, 等.基于MSPCA-KECA的冷水机组故障监测及诊断[J].化工学报, 2017, 68(4): 1499-1508. |
Qi Y S, Zhang H L, Wang L, et al. Fault monitoring and diagnosis of chiller based on MSPCA-KECA [J]. CIESC Journal, 2017, 68(4): 1499-1508. | |
20 | 韩华, 谷波, 任能. 基于主元分析与支持向量机的制冷系统故障诊断方法[J]. 上海交通大学学报, 2011, (9): 108-114+126. |
Han H, Gu B, Ren N. Fault diagnosis method of refrigeration system based on principal component analysis and support vector machine [J]. Journal of Shanghai Jiaotong University, 2011, (9): 108-114+126. | |
21 | 洪迎春. 基于多变量统计分析的制冷系统故障检测与诊断[D]. 上海: 上海交通大学, 2012. |
Hong Y C. Fault detection and diagnosis of refrigeration system based on multivariate statistical analysis [D]. Shanghai: Shanghai Jiaotong University, 2012. | |
22 | 梁晴晴, 韩华, 崔晓钰, 等. 基于主元分析-概率神经网络的制冷系统故障诊断[J]. 化工学报, 2016, 67(3): 1022-1031. |
Liang Q Q, Han H, Cui X Y, et al. Fault diagnosis of refrigeration system based on PCA-PNN [J]. CIESC Journal, 2016, 67(3): 1022-1031. | |
23 | 王路瑶, 吴斌, 杜志敏, 等.基于长短期记忆神经网络的数据中心空调系统传感器故障诊断[J].化工学报, 2018, 69: 252-259. |
Wang L Y, Wu B, Du Z M, et al. Sensor fault diagnosis of air conditioning system in data center based on neural network of long and short term memory [J]. CIESC Journal, 2018, 69: 252-259. | |
24 | 韩华. 基于顺序集成方法的制冷系统故障检测与诊断研究[D].上海: 上海交通大学, 2012. |
Han H. Study on fault detection and diagnosis of refrigeration system based on sequential integration method [D]. Shanghai: Shanghai Jiaotong University, 2012. | |
25 | 赵旭, 阎威武, 邵惠鹤, 等. 基于核Fisher判别分析方法的非线性统计过程监控与故障诊断[J]. 化工学报, 2007, 58(4): 951-956. |
Zhao X, Yan W W, Shao H H, et al. Nonlinear statistical process monitoring and fault diagnosis based on nuclear Fisher discriminant analysis [J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4): 951-956. | |
26 | 周志华, 王珏. 机器学习及其应用2009[M]. 北京: 清华大学出版社, 2009. |
Zhou Z H, Wang J. Machine Learning and Its Application 2009[M]. Beijing: Tsinghua University Press, 2009. | |
27 | Valle S, Li W, Qin S J. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods[J]. Industrial & Engineering Chemistry Research, 1999, 38(11): 4389-4401. |
28 | Jos B, Draper B A. Feature selection from huge feature sets[C]// Proceedings. Eighth IEEE International Conference on Computer Vision. IEEE, 2001. |
29 | Robnik M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1/2): 23-69. |
30 | Deng X, Li Y, Weng J, et al. Feature selection for text classification: a review[J]. Multimedia Tools and Applications, 2018, 78: 3797-3816. |
[1] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[4] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[5] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[6] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[7] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[8] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[9] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[10] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[11] | Bowen LEI, Jianhua WU, Qihang WU. Research on high injection superheat cycle for R290 low pressure ratio heat pump [J]. CIESC Journal, 2023, 74(5): 1875-1883. |
[12] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[13] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[14] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[15] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||