1 |
Wu X, Yao H, Liu Q, et al. Producing acetic acid of acetobacter pasteurianus by fermentation characteristics and metabolic flux analysis[J]. Applied Biochemistry and Biotechnology, 2018, 186(1): 217-232.
|
2 |
Herwig C, von Stockar U. A small metabolic flux model to identify transient metabolic regulations in Saccharomyces cerevisiae[J]. Bioprocess and Biosystems Engineering, 2002, 24: 395–403.
|
3 |
高岩, 赵忠盖, 刘飞. 基于动态代谢通量分析的发酵过程多目标优化[J]. 化工学报, 2018, 69(6): 2594-2602.
|
|
Gao Y, Zhao Z G, Liu F. DMFA-based multi-objective optimization for fermentation processes[J]. CIESC Journal, 2018, 69(6): 2594-2602.
|
4 |
Edwards J S, Kauffman K W, Prakash T P. Advances in flux balance analysis[J]. Current Opinion in Biotechnology, 2003, 14(5): 491-496.
|
5 |
Mahadevan R, Edwards J S, Doyle F J. Dynamic flux balance analysis of diauxic growth in Escherichia coli[J]. Biophysical Journal, 2002, 83(3): 1331-1340.
|
6 |
Amir A, Barton P I. An improved multi-parametric programming algorithm for flux balance analysis of metabolic networks[J]. Journal of Optimization Theory and Applications, 2018, 178: 502-537.
|
7 |
Gagneur J, Klamt S. Computation of elementary modes: a unifying framework and the new binary approach[J]. BMC Bioinformatics, 2004, 5: 1-21.
|
8 |
Martine D N, François V, Antoine M, et al. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells[J]. BMC Systems Biology, 2011, 5(1): 95.
|
9 |
Liu Y H, Bi J X, Zeng A P, et al. A cybernetic model to describe the dynamics of myeloma cell cultivations[J]. Applied Mathematics and Computation, 2008, 205(1): 84-97.
|
10 |
韩玲玉, 成宝琨, 郑小梅, 等. 黑曲霉生产柠檬酸的控制论模型[J]. 化工学报, 2015, 66(11): 4534-4539.
|
|
Han L Y, Cheng B K, Zheng X M, et al. Cybernetic modeling for citric acid fermentation by Aspergillus niger[J]. CIESC Journal, 2015, 66(11): 4534-4539.
|
11 |
Kim J I, Varner J D, Ramkrishna D. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables[J]. Biotechnology Progress, 2008, 24(5): 993-1006.
|
12 |
Song H S, Morgan J A, Ramkrishna D. Systematic development of hybrid cybernetic models: application to recombinant yeast co-consuming glucose and xylose[J]. Biotechnology and Bioengineering, 2009, 103(5): 984-1002.
|
13 |
Song H S, Ramkrishna D. Reduction of a set of elementary modes using yield analysis[J]. Biotechnology and Bioengineering, 2009, 102(2): 554-568.
|
14 |
Franz A. Nonlinear dynamics of PHB production in Ralstonia eutropha and Rhodospirillum rubrum[D]. Otto-von-Guericke-Universität Magdeburg, 2015.
|
15 |
Franz A, Song H S, Ramkrishna D, et al. Experimental and theoretical analysis of poly(β-hydroxybutyrate) formation and consumption in Ralstonia eutropha[J]. Biochemical Engineering Journal, 2011, 55(1): 49-58.
|
16 |
Carius L, Pohlodek L, Morabito B, et al. Model-based state estimation based on hybrid cybernetic models[C]//IFAC International Symposium on Advanced Control of Chemical Processes, 2018: 191-196.
|
17 |
Jahanmiri A, Rasooli H. On-line states and parameter identification of acetone-butanol-ethanol fermentation process[J]. Biochemical Engineering Journal, 2005, 24(2): 115-123.
|
18 |
Grewal M S, Andrews A P. Kalman Filtering: Theory and Practice Using MATLAB[M]. 2nd ed. New York: John Wiley & Sons, Inc., 2001: 176-180.
|
19 |
Bellgardt K H, Kuhlmann W, Meyer H D, et al. Application of an extended Kalman filter for state estimation of a yeast fermentation[J]. IEE Proceedings. Part D: Control Theory and Applications, 1986, 133(5): 226-234.
|
20 |
Simutis R, Havlik I, Lübbert A. Fuzzy-aided neural network for real-time state estimation and process prediction in the alcohol formation step of production-scale beer brewing[J]. Journal of Biotechnology, 1993, 27(2): 203-215.
|
21 |
Stephanopoulos G, Konstantinov K, Saner U, et al. Fermentation data analysis for diagnosis and control[M]// Biotechnology: Bioprocessing. 2nd ed. Wiley-VCH Verlag GmbH, 2008: 379-383.
|
22 |
Varma A, Palsson B O. Metabolic flux balancing: basic concepts, scientific and practical use[J]. Nature Biotechnology, 1994, 12(10): 994-998.
|
23 |
Kamp A V, Schuster S. Metatool 5.0: fast and flexible elementary modes analysis[J]. Bioinformatics, 2006, 22(15): 1930.
|
24 |
Klamt S, Saez-Rodriguez J, Gilles E D. Structural and functional analysis of cellular networks with CellNetAnalyzer[J]. BMC Systems Biology, 2007, 1: 2.
|
25 |
Cong T T, Thompson R A. Elementary mode analysis: a useful metabolic pathway analysis tool for reprograming microbial metabolic pathways[J]. Sub-cellular Biochemistry, 2012, 64(64): 21.
|
26 |
De Figueiredo L F, Podhorski A, Rubio A, et al. Computing the shortest elementary flux modes in genome-scale metabolic networks[J]. Bioinformatics, 2009, 25(23): 3158-3165.
|
27 |
Song H S, Ramkrishna D. Reduction of a set of elementary modes using yield analysis[J]. Biotechnology and Bioengineering, 2009, 102(2): 554-568.
|
28 |
Luna M F, Martínez E C. Optimal design of dynamic experiments in the development of cybernetic models for bioreactors[J]. Chemical Engineering Research and Design, 2018, 136: 334-346.
|
29 |
Turner B G, Ramkrishna D. Revised enzyme-synthesis rate expression in cybernetic models of bacterial-growth[J]. Biotechnology and Bioengineering, 1988, 31(1): 41-43.
|
30 |
Young J D, Ramkrishna D. On the matching and proportional laws of cybernetic models[J]. Biotechnology Progress, 2007, 23(1): 83-99.
|