CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 315-321.DOI: 10.11949/0438-1157.20191197
• Process system engineering • Previous Articles Next Articles
Rong A1(),Liping PANG2,Dongsheng YANG3,Bin QI1
Received:
2019-10-12
Revised:
2019-11-21
Online:
2020-04-25
Published:
2020-04-25
Contact:
Rong A
通讯作者:
阿嵘
作者简介:
阿嵘(1991—),女,博士,工程师,CLC Number:
Rong A, Liping PANG, Dongsheng YANG, Bin QI. Design and optimization of integrated thermal management system for high-speed aircraft[J]. CIESC Journal, 2020, 71(S1): 315-321.
阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
系统 | 系统架构 | 热沉 | 引气源 | Ma |
---|---|---|---|---|
1 | 1-2-3-4-5-6-1 7(IB)-8-9 | 外涵道空气 | 中压级 | [1,3) |
2 | 1-2'-3-4-5-6-1 7(IB)-8-9 | 高温Pao | 中压级 | [1,3) |
3 | 1-2'-3-4-5-6-1 7(RB)-8-9 | 高温Pao | 冲压空气 | [1,4.4) |
Table 1 Architecture and Mach number range
系统 | 系统架构 | 热沉 | 引气源 | Ma |
---|---|---|---|---|
1 | 1-2-3-4-5-6-1 7(IB)-8-9 | 外涵道空气 | 中压级 | [1,3) |
2 | 1-2'-3-4-5-6-1 7(IB)-8-9 | 高温Pao | 中压级 | [1,3) |
3 | 1-2'-3-4-5-6-1 7(RB)-8-9 | 高温Pao | 冲压空气 | [1,4.4) |
代偿损失来源 | 1 | 2 | 3 | 计算方法 |
---|---|---|---|---|
进气道 阻力 | ● | ○ | ○ | |
换热器 质量 | ● | ● | ● | |
压缩机质量 | ● | ● | ● | |
制冷涡轮质量 | ● | ● | ● | |
发电涡轮质量 | ● | ● | ● | |
冲压空气引气 | ○ | ○ | ● | |
中压级 引气 | ● | ● | ○ | |
燃油消耗 | ? | ? | ? |
Table 2 Sources and calculations of fuel weight penalty
代偿损失来源 | 1 | 2 | 3 | 计算方法 |
---|---|---|---|---|
进气道 阻力 | ● | ○ | ○ | |
换热器 质量 | ● | ● | ● | |
压缩机质量 | ● | ● | ● | |
制冷涡轮质量 | ● | ● | ● | |
发电涡轮质量 | ● | ● | ● | |
冲压空气引气 | ○ | ○ | ● | |
中压级 引气 | ● | ● | ○ | |
燃油消耗 | ? | ? | ? |
系统 | |||||
---|---|---|---|---|---|
系统1 | x1 | 950 | 10 | — | — |
LB | 0.1 | 0 | 0 | ||
UB | 1000 | 20 | 0.9Pz-P0 | 5 | |
系统 2和3 | x1 | 700 | 3 | — | — |
LB | 473 | 0.1 | — | — | |
UB | 1000 | 8 | — | — |
Table 3 Initial and constraint conditions of optimization
系统 | |||||
---|---|---|---|---|---|
系统1 | x1 | 950 | 10 | — | — |
LB | 0.1 | 0 | 0 | ||
UB | 1000 | 20 | 0.9Pz-P0 | 5 | |
系统 2和3 | x1 | 700 | 3 | — | — |
LB | 473 | 0.1 | — | — | |
UB | 1000 | 8 | — | — |
参数 | 数值 |
---|---|
巡航时长/s | 4200 |
高温Pao温度/℃ | 150 |
设备最高许用温度/℃ | 70 |
闭式循环涡轮出口压力/kPa | 100 |
升阻比 | 4.62 |
单位推力燃油消耗量TSFC/h-1 | 3600(Ct,1+ Ct,2Ma) |
常数Ct,1/s-1 | 1.1×10-4 |
常数Ct,2/s-1 | 6.8×10-5 |
进气道阻力损失系数 | 0.9 |
涡轮和压缩机的绝热效率 | 0.75 |
机械效率 | 0.98 |
发动机涡轮前最高温度/K | 1400 |
发动机压气机末级最高温度/K | 800 |
Table 4 Related parameters of optimization
参数 | 数值 |
---|---|
巡航时长/s | 4200 |
高温Pao温度/℃ | 150 |
设备最高许用温度/℃ | 70 |
闭式循环涡轮出口压力/kPa | 100 |
升阻比 | 4.62 |
单位推力燃油消耗量TSFC/h-1 | 3600(Ct,1+ Ct,2Ma) |
常数Ct,1/s-1 | 1.1×10-4 |
常数Ct,2/s-1 | 6.8×10-5 |
进气道阻力损失系数 | 0.9 |
涡轮和压缩机的绝热效率 | 0.75 |
机械效率 | 0.98 |
发动机涡轮前最高温度/K | 1400 |
发动机压气机末级最高温度/K | 800 |
1 | Office of the US Air Force Chief Scientist. Technology Horizons: A Vision for Science and Technology During 2010-2030 [M]. Maxwell AFB: Air University Press, 2010. |
2 | 李益翔. 美国高超声速飞行器发展历程研究[D].哈尔滨: 哈尔滨工业大学, 2016. |
Li Y X. Research on the development history of US hypersonic aircrafts[D]. Harbin: Harbin Institute of Technology, 2016. | |
3 | Anderson J D. Hypersonic and High-Temperature Gas Dynamics[M]. New York: McGraw-Hill, 1989: 4-24. |
4 | 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012: 3. |
Cai G B, Xu D J. Hypersonic Aircraft Technology[M]. Beijing: Science Press,2012:3. | |
5 | Mehta J, Charneski J, Wells P. Unmanned aerial systems (UAS) thermal management needs, status current, and future innovations[C]// 10th International Energy Conversion Engineering Conference. AIAA, 2012, 4051:1-14. |
6 | Mahefkey T, Yerkes K, Donovan B, et al. Thermal management challenges for future military aircraft power systems[C]// Power Systems Conference. SAE International, 2004, 3204:1-9. |
7 | 孙友师. 从多电飞机到能量优化飞机——美国空军航空机电领域发展计划浅析[C]//中国航空学会2015年第二届中国航空科学技术大会论文集.中国航空学会, 2015:495-498. |
Sun Y S. From MEA to EOA: analysis of USAF development programs related to aircraft system[C]//Proceedings of the 2nd China Aviation Science and Technology Conference of China Aviation Society 2015. CAS, 2015: 495-498. | |
8 | Walters E, Amrhein M, O'Connell T, et al. modeling Invent, simulation, analysis and optimization[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA, 2010, 287:1-11. |
9 | Faleiro L. Summary of the European power optimised aircraft (POA) project[C]//45th International Congress of the Aeronautical Sciences. Optimage Ltd., 2006, 244:1-4. |
10 | Pangborn H C, Hey J E, Deppen T O,et al. Hardware-in-the-loop validation of advanced fuel thermal management control[J]. J. Thermophys Heat Transfer, 2017, 31(4): 901-909. |
11 | Maser A, Garcia E, Mavris D. Characterization of thermodynamic irreversibility for integrated propulsion and thermal management systems design[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA, 2012, 1124:1-24. |
12 | Reed W, von Spakovsky M, Raj P. Comparison of heat exchanger and thermal energy storage designs for aircraft thermal management systems[C]// 54th AIAA Aerospace Sciences Meeting. AIAA, 2016, 1023:1-14. |
13 | Sprouse J. F-22 environmental control/thermal management fluid transport optimization[C]//30th International Conference on Environmental Systems. SAE International, 2000, 2266:1-6. |
14 | German B, Daskilewicz M, Doty J. Using interactive visualizations to assess aircraft thermal management system modeling approaches[C]//11th AIAA Aviation Technology, Integration, and Operations (atio) Conference. AIAA, 2011, 7060:1-13. |
15 | 沙拉, 塞库利克. 换热器设计技术[M]. 程林, 译. 北京: 机械工业出版社, 2010: 285-292. |
Salad R K, Sekulic D P. Fundamentals of Heat Exchanger Design[M]. Cheng L,trans. Beijing: China Machine Press, 2010: 285-292. | |
16 | 余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2006: 20-25. |
Yu J Z. Principle and Design of the Heat Exchanger[M]. Beijing: Beihang University Press, 2006: 20-25. | |
17 | Weise P C. Mission-integrated synthesis/design optimization of aerospace systems under transient conditions[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2012. |
18 | Donovan A B. Vehicle level transient aircraft thermal management modeling and simulation[D]. Fairborn: Wright State University, 2016. |
19 | Roberts R, Eastbourn M S. Vehicle level tip-to-tail modeling of an aircraft[J]. Int. J. Thermodyn., 2014, 17(2): 107-115. |
20 | Iya S K. Thermal management of advanced aircraft secondary power systems[C]//Aerospace Technology Conference and Exposition. SAE International, 1990, 901959:1-10. |
21 | SAE Aerospace Applied Thermodynamics Manual. Aircraft Fuel Weight Penalty Due to Air Conditioning[R]. SAE International, 2004. |
22 | Weise P C. Mission-integrated synthesis/design optimization of aerospace systems under transient conditions[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2012. |
23 | 赵继俊. 优化技术与MATLAB优化工具箱[M]. 北京: 机械工业出版社, 2011:141-144. |
Zhao J J. Optimization Technology and MATLAB Optimization Toolbox[M]. Beijing: China Machine Press, 2011:141-144. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[5] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[8] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[9] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[10] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[11] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[12] | Jian CAO, Nannan YE, Guancong JIANG, Yao QIN, Shibo WANG, Jiahua ZHU, Xiaohua LU. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry [J]. CIESC Journal, 2022, 73(6): 2543-2551. |
[13] | Qiwang HOU, Zhaolun WEN, Zhonglin ZHANG, Yegang LIU, Jingxuan YANG, Dongliang CHEN, Xiaogang HAO, Guoqing GUAN. Design and evaluation of a coal-based polygeneration system with carbon cycle [J]. CIESC Journal, 2022, 73(5): 2073-2082. |
[14] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[15] | Zihao QI, Wenqi ZHONG, Xi CHEN, Guanwen ZHOU, Xiaoliang ZHAO, Meijing XIN, Yi CHEN, Yongchang ZHU. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling [J]. CIESC Journal, 2022, 73(5): 2039-2051. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 333
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 571
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||