CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4826-4835.DOI: 10.11949/0438-1157.20191231
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Received:
2019-10-23
Revised:
2020-02-12
Online:
2020-10-05
Published:
2020-10-05
Contact:
Jing LI
通讯作者:
李静
作者简介:
蔡迪(1994—),男,硕士研究生,基金资助:
CLC Number:
Di CAI, Jing LI. Study on thermal properties of stearyl alcohol modified graphene oxide/ n-octadecane composite phase change materials[J]. CIESC Journal, 2020, 71(10): 4826-4835.
蔡迪, 李静. 硬脂醇改性的氧化石墨烯/正十八烷复合相变材料的热物性研究[J]. 化工学报, 2020, 71(10): 4826-4835.
样品 | 起始温度Tms /℃ | 峰值Tmp /℃ | 终止温度Tme/℃ | 相变焓Hm/(J/g) |
---|---|---|---|---|
正十八烷 | 24.6 | 28.6 | 34.9 | 232.0 |
1%(质量)改性石墨烯/正十八烷 | 22.6 | 29.2 | 34.4 | 229.0 |
2%(质量)改性石墨烯/正十八烷 | 24.2 | 28.8 | 34.3 | 228.3 |
3%(质量)改性石墨烯/正十八烷 | 24.0 | 28.5 | 34.5 | 223.3 |
4%(质量)改性石墨烯/正十八烷 | 23.2 | 28.5 | 33.8 | 220.3 |
Table 1 Phase transition temperature and enthalpy of n-octadecane and composite phase change materials during melting process
样品 | 起始温度Tms /℃ | 峰值Tmp /℃ | 终止温度Tme/℃ | 相变焓Hm/(J/g) |
---|---|---|---|---|
正十八烷 | 24.6 | 28.6 | 34.9 | 232.0 |
1%(质量)改性石墨烯/正十八烷 | 22.6 | 29.2 | 34.4 | 229.0 |
2%(质量)改性石墨烯/正十八烷 | 24.2 | 28.8 | 34.3 | 228.3 |
3%(质量)改性石墨烯/正十八烷 | 24.0 | 28.5 | 34.5 | 223.3 |
4%(质量)改性石墨烯/正十八烷 | 23.2 | 28.5 | 33.8 | 220.3 |
样品 | 起始温度Tss/℃ | 峰值Tsp/℃ | 终止温度Tse/℃ | 相变焓Hs/(J/g) |
---|---|---|---|---|
正十八烷 | 27.8 | 26.9 | 23.2 | -225.8 |
1%(质量)改性石墨烯/正十八烷 | 27.9 | 27.0 | 23.1 | -222.9 |
2%(质量)改性石墨烯/正十八烷 | 28.2 | 27.2 | 23.2 | -220.2 |
3%(质量)改性石墨烯/正十八烷 | 28.4 | 26.9 | 23.2 | -218.1 |
4%(质量)改性石墨烯/正十八烷 | 28.4 | 27.1 | 22.9 | -214.5 |
Table 2 Phase transition temperature and enthalpy of n-octadecane and composite phase change materials during solidification process
样品 | 起始温度Tss/℃ | 峰值Tsp/℃ | 终止温度Tse/℃ | 相变焓Hs/(J/g) |
---|---|---|---|---|
正十八烷 | 27.8 | 26.9 | 23.2 | -225.8 |
1%(质量)改性石墨烯/正十八烷 | 27.9 | 27.0 | 23.1 | -222.9 |
2%(质量)改性石墨烯/正十八烷 | 28.2 | 27.2 | 23.2 | -220.2 |
3%(质量)改性石墨烯/正十八烷 | 28.4 | 26.9 | 23.2 | -218.1 |
4%(质量)改性石墨烯/正十八烷 | 28.4 | 27.1 | 22.9 | -214.5 |
样品 | 热扩散系数/(mm2/s) | 密度/(g/cm3) | 比热容/(J/(g·K)) | 热导率/(W/(m·K)) |
---|---|---|---|---|
正十八烷 | 0.137 | 0.777 | 1.658 | 0.177 |
1%(质量)改性石墨烯/正十八烷 | 0.184 | 0.771 | 2.007 | 0.285 |
2%(质量)改性石墨烯/正十八烷 | 0.230 | 0.766 | 1.973 | 0.338 |
3%(质量)改性石墨烯/正十八烷 | 0.266 | 0.760 | 1.934 | 0.391 |
4%(质量)改性石墨烯/正十八烷 | 0.278 | 0.755 | 1.950 | 0.409 |
Table 3 Thermal conductivity and relevant data of n-octadecane and composite phase change materials
样品 | 热扩散系数/(mm2/s) | 密度/(g/cm3) | 比热容/(J/(g·K)) | 热导率/(W/(m·K)) |
---|---|---|---|---|
正十八烷 | 0.137 | 0.777 | 1.658 | 0.177 |
1%(质量)改性石墨烯/正十八烷 | 0.184 | 0.771 | 2.007 | 0.285 |
2%(质量)改性石墨烯/正十八烷 | 0.230 | 0.766 | 1.973 | 0.338 |
3%(质量)改性石墨烯/正十八烷 | 0.266 | 0.760 | 1.934 | 0.391 |
4%(质量)改性石墨烯/正十八烷 | 0.278 | 0.755 | 1.950 | 0.409 |
Fig.8 Thermal conductivity and thermal diffusion coefficient of modified graphene/n-octadecane composite phase change materials with different mass fractions at 20℃
1 | Zhang P, Ma Z W, Wang R Z. An overview of phase change material slurries: MPCS and CHS[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 598-614. |
2 | Zhang Q, Wang H, Ling Z, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells, 2015, 140: 158-166. |
3 | Zhang Z, Zhang N, Peng J, et al. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Applied Energy, 2012, 91(1): 426-431. |
4 | Lin Y, Jia Y, Alva G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 2730-2742. |
5 | Liu L K, Su D, Tang Y J, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review[J]. Renewable & Sustainable Energy Reviews, 2016, 62: 305-317. |
6 | Karaman S, Karaipekli A, Sari A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2011, 95(7): 1647-1653. |
7 | Dao T D, Jeong H M. Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance[J]. Solar Energy Materials and Solar Cells, 2015, 137: 227-234. |
8 | Iwata H, Oodate M, Uyama Y, et al. Preparation of temperature-sensitive membranes by grafting polymerization onto a porous membrane[J]. J. Membrane Sci., 1991, 55: 119-124. |
9 | Okahata Y, Noguchi H, Seki T. Thermoselective permeation from a polymer-grafted capsule membrane[J]. Macromolecules, 1986, 19: 493-499. |
10 | Chu L Y, Park S H, Yamaguchi T, et al. Preparation of thermo-responsive core-shell microcapsule with a porous membrane and poly(N-isopropylacrylamide) gates[J]. J. Membrane Sci., 2001, 192: 27-37. |
11 | Peng T, Cheng Y L. Temperature-responsive permeability of porous PNIPAAm-g-PE membranes[J]. J. Appl. Polym. Sci., 1998, 70: 2133-2140. |
12 | Ito Y, Ochiai Y, Park Y S, et al. pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane[J]. J. Am. Chem. Soc., 1997, 119: 1619-1631. |
13 | Ito Y, Park Y S, Imanishi Y. Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes[J]. J. Am. Chem. Soc., 1997, 119: 2739-2755. |
14 | Chung D J, Ito Y, Imanishi Y. Preparation of porous membranes grafted with poly(spiropyran-containing methacrylate) and photo control of permeability[J]. J. Appl. Polym. Sci., 1994, 51: 2027-2040. |
15 | Tan S H, Mohamedali A, Kapur A, et al. A novel, cost-effective and efficient chicken egg IgY purification procedure[J]. Journal of Immunological Methods, 2012, 380(1/2): 73-76. |
16 | Marcet I, Laca A, Paredes B, et al. IgY isolation from a watery by-product obtained from an egg yolk fractionation process[J]. Food and Bioproducts Processing, 2011, (2): 87-91. |
17 | Dao T D, Jeong H M. A Pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon, 2016, 99: 49-57. |
18 | Mehrali M, Latibari S T, Mehrali M, et al. Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage[J]. Appl. Energy, 2014, 135: 339-349. |
19 | 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究[J]. 物理学报, 2019, 68(10): 100502. |
Cai D, Li J, Jiao N X. Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials[J]. Acta Physica Sinica, 2019, 68(10): 100502. | |
20 | 陈轩. 含纳米颗粒相变复合储能材料的强化传热机理与工艺研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
Chen X. Research on heat transfer mechanism and optimization of experiment process of nanoparticles containing phase change composite[D]. Harbin: Harbin Engineering University, 2016. | |
21 | 张金辉. 石蜡及其复合相变材料的热物性研究[D]. 青岛: 青岛科技大学, 2014. |
Zhang J H. Thermophysical properties of paraffin wax and its composite phase change materials[D]. Qingdao: Qingdao University of Science and Technology, 2014. | |
22 | Wu S, Li T X, Yan T, et al. High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 102: 733-744. |
23 | Tahani M, et al. Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid[J]. International Communications in Heat and Mass Transfer, 2016, 76: 358-365. |
24 | Alazmi A, Rasul S, Patole S P, et al. Comparative study of synthesis and reduction methods for graphene oxide[J]. Polyhedron, 2016, 116: 153-161. |
25 | Yuan K, Wang H, Liu J, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Materials & Solar Cells, 2015, 143(143): 29-37. |
26 | Stengl V, Bakardjieva S, Bakardjiev M, et al. Carborane functionalized graphene oxide, a precursor for conductive self-assembled monolayers[J]. Carbon, 2014, 67: 336-343. |
27 | 周建伟, 程玉良, 王储备, 等. 硬脂酸/氧化石墨烯复合相变储热材料研究[J]. 化工新型材料, 2013, 41(6): 47-49. |
Zhou J W, Cheng Y L, Wang C B, et al. Study on stearic acid/ graphene oxide composite phase-change for thermal storage[J]. New Chemical Materials, 2013, 41(6): 47-49. | |
28 | 王赫, 王建平, 王艳, 等. 加入改性石墨烯的聚甲基丙烯酸甲酯/正十八烷相变材料微胶囊的制备与表征[J]. 化工新型材料, 2014, 42(1): 118-121. |
Wang H, Wang J P, Wang Y, et al. Preparation and characterization of microcapsules of graphite modified poly(methyl methacrylate)/n-octadecane phase change material[J]. New Chemical Materials, 2014, 42(1): 118-121. | |
29 | 陈素清, 黄国波, 鲍建设, 等. 石墨烯导热增强相变储能材料的制备及性能[J]. 新型炭材料, 2018, 33(3): 262-267. |
Chen S Q, Huang G B, Bao J S, et al. Preparation and thermal properties of phase change material modified by a functionalized reduced graphene oxide[J]. New Carbon Materials, 2018, 33(3): 262-267. | |
30 | 刘焕炳. 聚乙二醇正十六烷基醚接枝氧化石墨烯相变材料的制备及性能研究[D].天津: 天津工业大学, 2018. |
Liu H B. Preparation and properties of polyethylene glycol N-cetyl ether grafted go phase change materials[D]. Tianjin: Tianjin University of Technology, 2018. | |
31 | 杨志涛, 张军强, 宗冬冬, 等. SiO2改性石墨烯-石蜡复合相变乳液的制备及热性能[J]. 新能源进展, 2017, 5(2): 110-116. |
Yang Z T, Zhang J Q, Zong D D, et al. Preparation and thermal properties of SiO2 modified graphene-paraffin composite phase change emulsion[J]. Advances in New and Renewable Energy, 2017, 5(2): 110-116. | |
32 | Wang Y, Liu Z, Zhang T, et al. Preparation and characterization of graphene oxide-grafted hexadecanol composite phase-change material for thermal energy storage[J]. Energy Technology, 2017, 5(11): 2005-2014. |
[1] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[2] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[3] | Zhichao LI, Yu ZHENG, Runnan ZHANG, Zhongyi JIANG. Research progress of high flux and antifouling graphene oxide membranes [J]. CIESC Journal, 2022, 73(6): 2370-2380. |
[4] | Jian WANG, Zixuan LEI, Jiayu YAO, Jian LI, Yuhong LIU. Synthesis and curing kinetics of terephthalaldehyde phenolic resin [J]. CIESC Journal, 2022, 73(3): 1403-1415. |
[5] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[6] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[7] | XIA Dong, HUANG Peng, LI Heng. Joule-heating studies of electrically conducting three-dimensional graphene aerogels prepared by hydrothermal assembly [J]. CIESC Journal, 2021, 72(7): 3839-3848. |
[8] | De AO, Haobing ZHANG, Meichan LYU, Haitao WANG, Na CHANG. Preparation and properties of MOF-199@GO modified PVDF charged composite nanofiltration membrane [J]. CIESC Journal, 2020, 71(S2): 297-305. |
[9] | Long TIAN, Ting LIU, Kening SUN. Research progress of graphene oxide membrane for water purification [J]. CIESC Journal, 2020, 71(9): 4112-4130. |
[10] | Ju WANG, Shufeng NIU, Ying FEI, Hong QI. Fabrication and stability of GO/Al2O3 composite nanofiltration membranes [J]. CIESC Journal, 2020, 71(6): 2795-2803. |
[11] | Dongyang MAO, Dan YANG, Jieping FAN. Preparation and properties of graphene oxide hybrid molecularly imprinted composite membranes [J]. CIESC Journal, 2020, 71(6): 2900-2911. |
[12] | Jingran NIU, Huining DENG, Wei ZHANG, Baisong HU, Shaofeng ZHANG. Regulation of support structure by TiO2 deposition and its effect on performance of GO membranes [J]. CIESC Journal, 2020, 71(6): 2850-2856. |
[13] | Yongsheng WANG, Xiaolin LAN, Tian QIU, Xinping ZHANG, Yingying WU, Li CHEN, Weixiang XU, Dongjie GUO, Zhengkang DUAN. Synthesis and characterization of copper-based graphene composite catalyst [J]. CIESC Journal, 2020, 71(6): 2889-2899. |
[14] | Huachao GUO, Bo YANG, Guojia HUANG, Qingyong XU, Shuang LI, Zhenling WU. Preparation and properties of polyvinylidene fluoride/graphene composites [J]. CIESC Journal, 2020, 71(4): 1881-1888. |
[15] | Yefeng LIU, Peng ZUO, Ruiqi LI, Weizhou JIAO, Ruixin WANG. Covalently supported polyoxometalate and its catalytic oxidative desulfurization of tetrahydrothiophene [J]. CIESC Journal, 2020, 71(4): 1627-1636. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 313
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 545
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||