CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4820-4825.DOI: 10.11949/0438-1157.20200714
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Received:
2020-06-05
Revised:
2020-07-24
Online:
2020-10-05
Published:
2020-10-05
Contact:
Yafei LI
通讯作者:
李亚飞
作者简介:
朱晓蓉(1994—),女,博士研究生,基金资助:
CLC Number:
Xiaorong ZHU, Yafei LI. Theoretical study on electrocatalytic nitrogen fixation performance of two-dimensional AuP2[J]. CIESC Journal, 2020, 71(10): 4820-4825.
朱晓蓉, 李亚飞. 二维AuP2材料电催化固氮性能的理论研究[J]. 化工学报, 2020, 71(10): 4820-4825.
Add to citation manager EndNote|Ris|BibTeX
1 | Deng J, Iñiguez J A, Liu C. Electrocatalytic nitrogen reduction at low temperature[J]. Joule, 2012, 2(5): 846-856. |
2 | Rosca V, Duca M, de Groot M T, et al. Nitrogen cycle electrocatalysis[J]. Chemical Reviews, 2009, 109(6):2209-2244. |
3 | Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68. |
4 | Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500. |
5 | Suryanto B H R, Du H L, Wang D B, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019, 2(4): 290-296. |
6 | Guo C X, Ran J R, Vasileff A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy and Environmental Science, 2018, 11(1): 45-56. |
7 | Jia H P, Quadrelli E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen[J]. Chemical Society Reviews, 2014, 43(2): 547-564. |
8 | Egill S, Thomas B, Sigrídur G, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2011, 14(3): 1235-1245. |
9 | Wang Y, Li Y F. PtTe monolayer: two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction[J]. Journal of the American Chemical Society, 2018, 40(140): 12732-12735 |
10 | Deng D H, Novoselov K S, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11(3): 218-230. |
11 | Sun Y F, Gao S, Lei F C, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis[J]. Chemical Society Reviews, 2015, 44(3): 623-636. |
12 | Hong X, Chan K, Tsai C, et al. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction[J]. ACS Catalysis, 2016, 6(7): 4428-4437. |
13 | Chou S S, Sai N, Lu P, et al. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide[J]. Nature Communications, 2015, 6(10): 8311-8311. |
14 | Gong Q F, Ding P, Xu M Q, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10(1): 2807. |
15 | Li L Q, Tang C, Xia B Q, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908. |
16 | Li X H, Li T S, Ma Y J, et al. Boosted electrocatalytic N2 reduction to NH3 by defect‐rich MoS2 nanoflower[J]. Advanced Energy Materials, 2018, 8(30):1801357. |
17 | Shi M M, Bao D, Li S J, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Advanced Energy Materials, 2018, 8(21):1800124. |
18 | Du Y Q, Jiang C, Xia W, et al. Electrocatalytic reduction of N2 and nitrogen-incorporation process on dopant-free defect graphene[J]. Journal of Materials Chemistry A, 2020, 8(1): 55-61. |
19 | Yu X, Han P, Wei Z, et al. Boron-doped graphene for electrocatalytic N2 reduction[J]. Joule, 2018, 2(8): 1610-1622. |
20 | He T W, Matta S K, Du A, et al. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions[J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1546-1551. |
21 | Zhao J X, Chen Z F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study[J]. Journal of the American Chemical Society, 2017, 139(36): 12480-12487. |
22 | Abel M, Clair S, Ourdjini O, et al. Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film[J]. Journal of the American Chemical Society, 2011, 133(5): 1203-1205. |
23 | Kambe T, Sakamoto R, Hoshiko K, et al. π-conjugated nickel bis(dithiolene) complex nanosheet[J]. Journal of the American Chemical Society, 2013, 135(7): 2462-2465. |
24 | Song Q L, Jiang S, Hasell T, et al. Porous organic cage thin films and molecular-sieving membranes[J]. Advanced Materials, 2016, 28(13):2629-2637. |
25 | Xu G Y, Nie P, Dou H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors[J]. Materials Today, 2017, 20(4): 191-209. |
26 | Wu S, Min H, Shi W, et al. Multicenter metal–organic framework‐based ratiometric fluorescent sensors[J]. Advanced Materials, 2020, 32(3):1805871. |
27 | Zhu L, Liu X, Jiang H, et al. Metal–organic frameworks for heterogeneous basic catalysis[J]. Chemical Reviews, 2017, 117(12): 8129-8176. |
28 | Tian H, Zhang J Q, Ho W K, et al. Two-dimensional metal-phosphorus network[J]. Matter, 2020, 2(1):111-118. |
29 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186. |
30 | Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953-17979. |
31 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
32 | Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562. |
33 | Nørskov J K, Rossmeisl J, Logadottir A A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004, 108(46): 17886-17892. |
34 | Grimme S. Semiempirical GGA-type density functional constructed with a long‐range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. |
35 | Mathew K, Sundararaman R, Letchworthweaver K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. Journal of Chemical Physics, 2014, 140(8): 084106. |
36 | Montoya J H, Tsai C, Vojvodic A, et al. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations[J]. ChemSusChem, 2015, 8(13): 2180-2186. |
[1] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[2] | Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(9): 3802-3814. |
[3] | Lei WANG, Yong JIANG, Dazhong ZHONG, Jiayuan LI, Genyan HAO, Qiang ZHAO, Jinping LI. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol [J]. CIESC Journal, 2022, 73(8): 3576-3585. |
[4] | Hengyuan LIU, Haihui WANG, Jianhong XU. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen [J]. CIESC Journal, 2022, 73(1): 32-45. |
[5] | Jie ZHANG, Zhuang LIU, Xiaojie JU, Rui XIE, Wei WANG, Liangyin CHU. Fabrication and dye separation performance study of layered Mg/Al hydroxide/polyvinyl alcohol composite membrane [J]. CIESC Journal, 2021, 72(9): 4941-4949. |
[6] | Yuanxin FANG, Wu XIAO, Xiaobin JIANG, Xiangcun LI, Gaohong HE, Xuemei WU. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid [J]. CIESC Journal, 2021, 72(9): 4740-4749. |
[7] | Wei DENG,Chunho LAM,Zhe XIONG,Xuepeng WANG,Jun XU,Long JIANG,Sheng SU,Yi WANG,Song HU,Jun XIANG. Research progress in electrocatalytic hydrogenation upgrading of bio-oil [J]. CIESC Journal, 2021, 72(10): 4987-5001. |
[8] | REN Jing, TAN Ling, ZHAO Yufei, SONG Yufei. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction [J]. CIESC Journal, 2021, 72(1): 398-424. |
[9] | Jing XU, Zixuan YOU, Junqi ZHANG, Zheng CHEN, Deguang WU, Feng LI, Hao SONG. Advances in engineering electroactive biofilms by synthetic biology approaches [J]. CIESC Journal, 2020, 71(9): 3950-3962. |
[10] | Qi ZHOU, Honglei DING, Detong GUO, Weiguo PAN, Wei DU. Recent advances in catalytic methods of CO2 hydrogenation to clean energy [J]. CIESC Journal, 2020, 71(8): 3428-3443. |
[11] | Xidong LIN, Youchen TANG, Quanfei SU, Shaohong LIU, Dingcai WU. Hierarchical porous carbon materials: structure design, functional modification and new energy devices applications [J]. CIESC Journal, 2020, 71(6): 2586-2598. |
[12] | Muyun ZHENG, Yuchi WAN, Ruitao LYU. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis [J]. CIESC Journal, 2020, 71(6): 2481-2491. |
[13] | Tong YANG, Xiaobo HE, Fengxiang YIN. Preparation of M-MOF-74 (M = Ni, Co, Zn) and its performance in electrocatalytic synthesis of ammonia [J]. CIESC Journal, 2020, 71(6): 2857-2870. |
[14] | Yanqi LIU, Ludong HE, Peichao LIAN, Xinzhi CHEN, Yi MEI. Progress on stability enhancement of black phosphorene [J]. CIESC Journal, 2020, 71(3): 936-944. |
[15] | LIU Changjian1,LI Debao2,YANG Shicheng3,LI Weibin3,HU Sheng3,ZHANG Zhihua3. Integrated process of electrochemical hydrogengation and electrooxidation of diesel oil [J]. CIESC Journal, 2012, 63(1): 198-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||