CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2900-2911.DOI: 10.11949/0438-1157.20200002
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Dongyang MAO(),Dan YANG,Jieping FAN()
Received:
2020-01-04
Revised:
2020-04-07
Online:
2020-06-05
Published:
2020-06-05
Contact:
Jieping FAN
通讯作者:
范杰平
作者简介:
毛东阳(1996—),男,硕士研究生,基金资助:
CLC Number:
Dongyang MAO, Dan YANG, Jieping FAN. Preparation and properties of graphene oxide hybrid molecularly imprinted composite membranes[J]. CIESC Journal, 2020, 71(6): 2900-2911.
毛东阳, 杨丹, 范杰平. 氧化石墨烯杂化分子印迹复合膜制备及性能研究[J]. 化工学报, 2020, 71(6): 2900-2911.
Add to citation manager EndNote|Ris|BibTeX
Membrane | 一级动力学模型 | 二级动力学模型 | ||||
---|---|---|---|---|---|---|
Qe,cal | K1×10-2 | R2 | Qe,cal | K2×10-4 | R2 | |
GO-MIM | 200.19 | 7.125 | 0.9791 | 219.28 | 4.136 | 0.9526 |
NGO-MIM | 210.83 | 6.947 | 0.9797 | 231.52 | 3.800 | 0.9590 |
GO-NIM | 49.73 | 12.043 | 0.9692 | 49.64 | 31.849 | 0.9634 |
NGO-NIM | 53.05 | 13.122 | 0.9652 | 56.19 | 34.009 | 0.9510 |
Table 1 Regression parameter of kinetic equation
Membrane | 一级动力学模型 | 二级动力学模型 | ||||
---|---|---|---|---|---|---|
Qe,cal | K1×10-2 | R2 | Qe,cal | K2×10-4 | R2 | |
GO-MIM | 200.19 | 7.125 | 0.9791 | 219.28 | 4.136 | 0.9526 |
NGO-MIM | 210.83 | 6.947 | 0.9797 | 231.52 | 3.800 | 0.9590 |
GO-NIM | 49.73 | 12.043 | 0.9692 | 49.64 | 31.849 | 0.9634 |
NGO-NIM | 53.05 | 13.122 | 0.9652 | 56.19 | 34.009 | 0.9510 |
Membrane | 温度/ ℃ | Langmuir等温 吸附方程 | Freundlich等温 吸附方程 | ||||
---|---|---|---|---|---|---|---|
Qm/(μmol/g) | KL | R2 | n | KF | R2 | ||
GO-MIM | 20 | 311.17 | 4.567 | 0.9776 | 2.936 | 278.47 | 0.9560 |
30 | 293.26 | 4.175 | 0.9825 | 2.843 | 259.36 | 0.9870 | |
40 | 286.39 | 3.484 | 0.9863 | 2.634 | 239.69 | 0.9364 | |
NGO-MIM | 20 | 320.82 | 4.653 | 0.9747 | 2.911 | 269.08 | 0.9664 |
30 | 306.32 | 4.137 | 0.9808 | 2.831 | 248.054 | 0.9448 | |
40 | 291.87 | 3.630 | 0.9683 | 2.582 | 232.96 | 0.9560 |
Table 2 Langmuir and Freundlich regression data of GO-MIM and NGO-MIM with synephrine hydrochloride aqueous solution
Membrane | 温度/ ℃ | Langmuir等温 吸附方程 | Freundlich等温 吸附方程 | ||||
---|---|---|---|---|---|---|---|
Qm/(μmol/g) | KL | R2 | n | KF | R2 | ||
GO-MIM | 20 | 311.17 | 4.567 | 0.9776 | 2.936 | 278.47 | 0.9560 |
30 | 293.26 | 4.175 | 0.9825 | 2.843 | 259.36 | 0.9870 | |
40 | 286.39 | 3.484 | 0.9863 | 2.634 | 239.69 | 0.9364 | |
NGO-MIM | 20 | 320.82 | 4.653 | 0.9747 | 2.911 | 269.08 | 0.9664 |
30 | 306.32 | 4.137 | 0.9808 | 2.831 | 248.054 | 0.9448 | |
40 | 291.87 | 3.630 | 0.9683 | 2.582 | 232.96 | 0.9560 |
Membrane | T/℃ | ΔG°/(kJ/mol) | ΔS°/(kJ/(mol·K)) | ΔH°/(kJ/mol) |
---|---|---|---|---|
GO-MIM | 20 | -3.702 | 0.0226 | -10.37 |
30 | -3.602 | |||
40 | -3.250 | |||
NGO-MIM | 20 | -3.747 | 0.0195 | -9.47 |
30 | -3.579 | |||
40 | -3.357 |
Table 3 Thermodynamic parameters of synephrine hydrochloride adsorbed by GO-MIM and NGO-MIM
Membrane | T/℃ | ΔG°/(kJ/mol) | ΔS°/(kJ/(mol·K)) | ΔH°/(kJ/mol) |
---|---|---|---|---|
GO-MIM | 20 | -3.702 | 0.0226 | -10.37 |
30 | -3.602 | |||
40 | -3.250 | |||
NGO-MIM | 20 | -3.747 | 0.0195 | -9.47 |
30 | -3.579 | |||
40 | -3.357 |
Membrane | Q/(μmol/g) | ||
---|---|---|---|
辛弗林盐酸盐 | 章胺盐酸盐 | 酪胺 | |
GO-MIM | 200.48 | 60.51 | 61.61 |
NGO-MIM | 206.49 | 61.38 | 60.40 |
GO-NIM | 61.09 | 58.59 | 57.27 |
NGO-NIM | 58.65 | 57.72 | 56.54 |
Table 4 Adsorption capacity of different substrates on MIM and NIM
Membrane | Q/(μmol/g) | ||
---|---|---|---|
辛弗林盐酸盐 | 章胺盐酸盐 | 酪胺 | |
GO-MIM | 200.48 | 60.51 | 61.61 |
NGO-MIM | 206.49 | 61.38 | 60.40 |
GO-NIM | 61.09 | 58.59 | 57.27 |
NGO-NIM | 58.65 | 57.72 | 56.54 |
Fig.12 HPLC chromatograms of the standard mixtures in the initial donor solution (a), receptor solutions through GO-MIM (b) and GO-NIM (c)1—synephrine hydrochloride; 2—octopamine hydrochloride; 3—tyramine
Membrane | P/(μmol/cm2) | TF | SF | |||||
---|---|---|---|---|---|---|---|---|
SYN | TYR | OTC | SYN | TYR | OTC | SF1 | SF2 | |
GO-MIM | 8.50 | 4.49 | 4.25 | 2.06 | 1.16 | 1.15 | 1.89 | 2.00 |
GO-NIM | 4.13 | 3.87 | 3.68 | 1.07 | 1.12 |
Table 5 Permeation factors of three substrates through GO-MIM and GO-NIM
Membrane | P/(μmol/cm2) | TF | SF | |||||
---|---|---|---|---|---|---|---|---|
SYN | TYR | OTC | SYN | TYR | OTC | SF1 | SF2 | |
GO-MIM | 8.50 | 4.49 | 4.25 | 2.06 | 1.16 | 1.15 | 1.89 | 2.00 |
GO-NIM | 4.13 | 3.87 | 3.68 | 1.07 | 1.12 |
1 | 谭天伟. 分子印迹技术及应用[M]. 北京: 化学工业出版社, 2010: 7. |
Tan T W. Molecular Imprinting Technology and Application[M]. Beijing: Chemical Industry Press, 2010: 7. | |
2 | Haupt K, Linares A V, Bompar M, et al. Molecularly imprinted polymers[J]. Topics in Current Chemistry, 2011, 325: 1-28. |
3 | Pan J, Chen W, Ma Y, et al. Molecularly imprinted polymers as receptor mimics for selective cell recognition[J]. Chemical Society Reviews, 2018, 47(15): 5574-5587. |
4 | Rutkowska M, Płotka-Wasylka J, Morrison C, et al. Application of molecularly imprinted polymers in analytical chiral separations and analysis[J]. Trends in Analytical Chemistry, 2018, 102: 91-102. |
5 | 唐志民, 马新宾. 溶菌酶分子印迹聚乳酸微球的制备及吸附性能[J]. 化工学报, 2016, 67(6): 2410-2416. |
Tang Z H, Ma X B. Preparation and adsorption properties of lysozyme molecularly imprinted polylactide microsphere[J].CIESC Journal, 2016, 67(6): 2410-2416. | |
6 | Fan J, Li L, Tian Z, et al. A novel free-standing flexible molecularly imprinted membrane for selective separation of synephrine in methanol–water media[J]. Journal of Membrane Science, 2014, 467: 13-22. |
7 | Fan J P, Zhang F Y, Yang X M, et al. Preparation of a novel supermacroporous molecularly imprinted cryogel membrane with a specific ionic liquid for protein recognition and permselectivity[J]. Journal of Applied Polymer Science. 2018, 135(41): 46740. |
8 | 赵宇, 谢培山, 卢平华, 等. 枳实、枳壳、青皮和陈皮等药材中辛弗林含量测定研究[J]. 世界科学技术, 2006, (4): 64-67. |
Zhao Y, Xie P S, Lu P H, et al. Determination of synephrine in Fructus Aurantii, Fructus Aurantii, Green Peel and Chenpi[J]. World Science and Technology, 2006, (4): 64-67. | |
9 | 蔡艳华. 枳实中生物碱辛弗林的提取分离研究[D]. 成都: 四川大学, 2005. |
Cai Y H. Study on the process to extract synephrine from Fructus Aurantii Immaturus[D]. Chengdu: Sichuan University, 2005. | |
10 | 胡静, 廖茂梁, 韦玮, 等. 枳实中辛弗林的固相萃取-HPLC测定[J]. 中国中药杂志, 2010, 35(6): 736-738. |
Hu J, Liao M L, Wei W, et al. Solid phase extraction of synephrine in Fructus Aurantii determined by HPLC[J]. Chinese Materia Medica, 2010, 35(6): 736-738. | |
11 | Fan J, Zhang L, Zhang X, et al. Molecularly imprinted polymers for selective extraction of synephrine from Aurantii Fructus Immaturus[J]. Analytical and Bioanalytical Chemistry, 2012, 402(3): 1337-1346. |
12 | 刘伟, 袁洪燕, 张群, 等. 柑橘类生物碱辛弗林的研究进展[J]. 湖南农业科学, 2016, (9): 101-106. |
Liu W, Yuan H Y, Zhang Q, et al. Research progress of Citrus alkaloid synephrine[J]. Hunan Agricultutral Science, 2016, (9): 101-106. | |
13 | 张国友, 邱静, 陈刚, 等. 柑橘中天然产物辛弗林的研究进展[J]. 中国食物与营养, 2015, 21(12): 8-12. |
Zhang G Y, Qiu J, Chen G, et al. Research progress of natural product synephrine in Citrus[J]. Food and Nutrition in China, 2015, 21(12): 8-12. | |
14 | Gao J, Zhou S, Hou Z, et al. One pot-economical fabrication of molecularly imprinted membrane employing carbon nanospheres sol coagulation bath with specific separation and advanced antifouling performances[J]. Separation and Purification Technology, 2019, 218: 59-69. |
15 | Fan J P, Cheng Y T, Zhang X H, et al. Preparation of a novel mixed non-covalent and semi-covalent molecularly imprinted membrane with hierarchical pores for separation of genistein in Radix Puerariae Lobatae[J]. Reactive and Functional Polymers, 2020, 146: 104439. |
16 | 张春静. 分子印迹复合膜的制备及其在药物分离上的应用[D]. 长沙: 中南大学, 2007. |
Zhang C J. Preparation of molecularly imprinted composite membrane and its application in drug separation[D]. Changsha: Central South University, 2007. | |
17 | Yoon K Y, An S J, Chen Y, et al. Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions[J]. Journal of Colloid and Interface Science, 2013, 403: 1-6. |
18 | 杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, (3): 193-200. |
Yang Y G, Chen C M, Wen Y F, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 2008, (3): 193-200. | |
19 | 郭长春. 氧化石墨烯(GO)与磺化氧化石墨烯(SGO)的制备及其修饰电极电化学研究[D]. 青岛: 青岛大学, 2012. |
Guo C C. Preparation of graphene oxide (GO) and sulfonated graphene oxide (SGO) and electrochemistry stuudy of its modified electrode[D]. Qingdao: Qingdao University, 2012. | |
20 | Liu J, Liu G, Liu W. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions[J]. Chemical Engineering Journal. 2014, 257: 299-308. |
21 | 陈建丽. 氧化石墨烯的功能化及其衍生物、复合物的制备与性能研究[D]. 长春: 吉林大学, 2013. |
Chen J L. Chemical functionalization of graphene oxide and grapene-based derivatives/nanocomposities: prepartions and properties[D]. Changchun: Jilin University, 2013. | |
22 | 刘海燕, 丁伟, 曲广淼, 等. 基于微波辐射的1-丁基-3-甲基咪唑氟硼酸盐离子液体的合成[J]. 大庆石油学院学报, 2008, 32(3): 49-52. |
Liu H Y, Ding W, Qiu G M, et al. Synthesis of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquids by microwave radiation[J]. Northeast Petroleum University, 2008, 32(3): 49-52. | |
23 | 王姿媛, 孙亦群. HPLC法测定陈皮、青皮中辛弗林的含量[J]. 中药材, 2009, 32(6): 913-914. |
Wang Z Y, Sun Y Q. Determination of synephrine in Chenpi and Qingpi by HPLC[J]. Chinese Medicinal Materials, 2009, 32(6): 913-914. | |
24 | Fan L, Luo C, Sun M, et al. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 523-529. |
25 | Wei H, Yang W, Xi Q, et al. Preparation of Fe3O4@graphene oxide core-shell magnetic particles for use in protein adsorption[J]. Materials Letters, 2012, 82: 224-226. |
26 | Yao Y, Miao S, Yu S, et al. Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent[J]. Journal of Colloid and Interface Science, 2012, 379(1): 20-26. |
27 | Fan J, Zheng B, Qin Y, et al. A superparamagnetic Fe3O4-graphene oxide nanocomposite for enrichment of nuciferine in the extract of Nelumbinis Folium (Lotus leaf)[J]. Applied Surface Science, 2016, 364: 332-339. |
28 | Peng L, Xu Z, Liu Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015, 6: 5716. |
29 | Xu Z, Zhang J, Shan M, et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 458: 1-13. |
30 | Cao X, Yin Z, Zhang H. Three-dimensional graphene materials: preparation, structures and application in supercapacitors[J]. Energy & Environmental Science, 2014, 7(6): 1850-1865. |
31 | Fan J P, Yu J X, Yang X M, et al. Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein[J]. Chemical Engineering Journal, 2018, 337: 722-732. |
32 | Fan J P, Xu X K, Xu R, et al. Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus × media[J]. Chemical Engineering Journal, 2015, 279: 567-577. |
33 | Fan J P, Yang D, Xu X, et al. Solubility of daidzin in different organic solvents and (ethyl alcohol+water) mixed solvents[J]. The Journal of Chemical Thermodynamics, 2015, 88: 85-89. |
34 | Liu Y. Is the free energy change of adsorption correctly calculated?[J]. Journal of Chemical & Engineering Data, 2009, 54(7): 1981-1985. |
35 | Wang H, Yuan X, Wu Y, et al. Corrigendum to “Adsorption characteristics and behaviors of graphene oxide for Zn(Ⅱ) removal from aqueous solution” [Appl. Surf. Sci. 279 (2013) 432-440][J]. Applied Surface Science, 2014, 301: 585. |
36 | Wu X, Wu Y, Chen L, et al. Bioinspired synthesis of pDA@GO-based molecularly imprinted nanocomposite membranes assembled with dendrites-like Ag microspheres for high-selective adsorption and separation of ibuprofen[J]. Journal of Membrane Science, 2018, 553: 151-162. |
37 | Lu J, Qiu Y, Wu Y, et al. Bidirectional molecularly imprinted membranes for selective recognition and separation of pyrimethamine: a double-faced loading strategy[J]. Journal of Membrane Science, 2020, 60: 117917. |
38 | Ulbricht M. Membrane separations using molecularly imprinted polymers[J]. Journal of Chromatography B, 2004, 804(1): 113-125. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[11] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[12] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[13] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[14] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[15] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||