CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5572-5580.DOI: 10.11949/0438-1157.20220933
• Energy and environmental engineering • Previous Articles Next Articles
Keqing ZHENG1(), Ya SUN1,2, Yangtian YAN1, Li LI3,4, Jun YANG5()
Received:
2022-07-01
Revised:
2022-10-27
Online:
2023-01-17
Published:
2022-12-05
Contact:
Jun YANG
郑克晴1(), 孙亚1,2, 闫阳天1, 李丽3,4, 杨钧5()
通讯作者:
杨钧
作者简介:
郑克晴(1989—),女,博士,副教授,keqingzheng@126.com
基金资助:
CLC Number:
Keqing ZHENG, Ya SUN, Yangtian YAN, Li LI, Jun YANG. Numerical simulation of novel SOFC interconnector with thermoelectric co-enhancement[J]. CIESC Journal, 2022, 73(12): 5572-5580.
郑克晴, 孙亚, 闫阳天, 李丽, 杨钧. 一种热电协同增强的固体氧化物燃料电池新型连接件的数值模拟[J]. 化工学报, 2022, 73(12): 5572-5580.
符号 | 数值 | 单位 | 物理意义 |
---|---|---|---|
10 | mm | 流道长度 | |
0.5 | mm | 流道高度 | |
H_electrode_a | 0.415 | mm | 阳极电极厚度 |
H_electrode_c | 0.002 | mm | 阴极电极厚度 |
H_electrolyte | 0.001 | mm | 电解质层厚度 |
p | 1 | atm① | 压强 |
T | 1000 | K | 温度 |
x_H2 | 0.9 | 入口处氢气的摩尔分数 | |
x_O2 | 0.21 | 入口处氧气的摩尔分数 | |
dens_c | 3030 | kg/m³ | 阴极密度 |
dens_a | 3310 | kg/m³ | 阳极密度 |
dens_e | 5160 | kg/m³ | 电解质密度 |
por_a | 0.4 | 阳极孔隙率 | |
por_c | 0.4 | 阴极孔隙率 | |
V_cell | 0.7 | V | 电压 |
u_a | 1 | m/s | 阳极气体流速 |
u_c | 1~4 | m/s | 阴极气体流速 |
Table 1 Structural dimensions and working conditions of model
符号 | 数值 | 单位 | 物理意义 |
---|---|---|---|
10 | mm | 流道长度 | |
0.5 | mm | 流道高度 | |
H_electrode_a | 0.415 | mm | 阳极电极厚度 |
H_electrode_c | 0.002 | mm | 阴极电极厚度 |
H_electrolyte | 0.001 | mm | 电解质层厚度 |
p | 1 | atm① | 压强 |
T | 1000 | K | 温度 |
x_H2 | 0.9 | 入口处氢气的摩尔分数 | |
x_O2 | 0.21 | 入口处氧气的摩尔分数 | |
dens_c | 3030 | kg/m³ | 阴极密度 |
dens_a | 3310 | kg/m³ | 阳极密度 |
dens_e | 5160 | kg/m³ | 电解质密度 |
por_a | 0.4 | 阳极孔隙率 | |
por_c | 0.4 | 阴极孔隙率 | |
V_cell | 0.7 | V | 电压 |
u_a | 1 | m/s | 阳极气体流速 |
u_c | 1~4 | m/s | 阴极气体流速 |
项目 | 阳极/通道 | 阳极/电解质 | 阴极/电解质 | 阴极/通道 |
---|---|---|---|---|
离子电荷平衡 | ||||
电子电荷平衡 | 0 | |||
质量平衡 |
Table 2 Boundary conditions for solving governing equations of electron, ion and gas transport
项目 | 阳极/通道 | 阳极/电解质 | 阴极/电解质 | 阴极/通道 |
---|---|---|---|---|
离子电荷平衡 | ||||
电子电荷平衡 | 0 | |||
质量平衡 |
符号 | 原参数 | 现参数 |
---|---|---|
10 mm | 100 mm | |
V_cell | 0.7 V | 0.7~0.9 V |
u_a | 1 m/s | 1 m/s |
u_c | 1~5 m/s | 4.5 m/s |
10 | 2.5 | |
0.7 | 1 |
Table 3 Adjust geometric parameters for model verification
符号 | 原参数 | 现参数 |
---|---|---|
10 mm | 100 mm | |
V_cell | 0.7 V | 0.7~0.9 V |
u_a | 1 m/s | 1 m/s |
u_c | 1~5 m/s | 4.5 m/s |
10 | 2.5 | |
0.7 | 1 |
1 | Rosner F, Rao A, Samuelsen S. Economics of cell design and thermal management in solid oxide fuel cells under SOFC-GT hybrid operating conditions[J]. Energy Conversion and Management, 2020, 220: 112952. |
2 | He Q J, Yu J, Xu H R,et al. Thermal effects in H2O and CO2 assisted direct carbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12459-12475. |
3 | 王源慧. 直接氨燃料电池中的阳极催化剂的研究[D]. 武汉: 中国地质大学, 2021. |
Wang Y H. The study of anode catalysts for direct ammonia fuel cell[D]. Wuhan: China University of Geosciences, 2021. | |
4 | Xu Q D, Guo Z J, Xia L C,et al. A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels[J]. Energy Conversion and Management, 2022, 253: 115175. |
5 | 张新宝, 张超, 孟凡朋, 等. 固体氧化物燃料电池的研究进展[J]. 山东陶瓷,2021, 44(1): 9-11. |
Zhang X B, Zhang C, Meng F P, et al. Research progress of solid oxide fuel cell[J]. Shandong Ceramics, 2021, 44(1): 9-11. | |
6 | 陈烁烁. 固体氧化物燃料电池产业的发展现状及展望[J]. 陶瓷学报,2020, 41(5): 627-632. |
Chen S S. Development and prospects of solid oxide fuel cell industry[J]. Journal of Ceramics, 2020, 41(5): 627-632. | |
7 | Kalib N S, Muchtar A, Somalu M R,et al. Influence of heat transfer on thermal stress development in solid oxide fuel cells: a review[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2019, 54(2): 175-184. |
8 | Zeng Z Z, Qian Y P, Zhang Y J, et al. A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks[J]. Applied Energy, 2020, 280: 115899. |
9 | Dillig M, Leimert J, Karl, J,et al. Planar high temperature heat pipes for SOFC/SOEC stack applications[J]. Fuel Cells, 2014, 14(3):479-488. |
10 | Dillig M, Plankenbühler T, Karl J. Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming[J]. Journal of Power Sources, 2018, 373:139-149. |
11 | Marocco P, Ferrero D, Lanzini A,et al. Benefits from heat pipe integration in H2/H2O fed SOFC systems[J]. Applied Energy, 2019, 241: 472-482. |
12 | Dillig M, Meyer T, Karl J. Integration of planar heat pipes to solid oxide cell short stacks[J]. Fuel Cells, 2015, 15(5): 742-748. |
13 | Venkataraman V. Thermal modelling and coupling of a heat pipe integrated desorber with a solid oxide fuel cell[J]. Applied Thermal Engineering, 2019, 147: 943-961. |
14 | Achenbach E. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack[J]. Journal of Power Sources, 1994, 49(1/2/3): 333-348. |
15 | Manglik R M, Magar Y N. Heat and mass transfer in planar anode-supported solid oxide fuel cells: effects of interconnect fuel/oxidant channel flow cross section[J]. Journal of Thermal Science and Engineering Applications, 2015, 7(4): 041003. |
16 | Andersson M, Yuan J, Sundén B. SOFC cell design optimization using the finite element method based CFD approach[J]. Fuel Cells, 2014, 14(2): 177-188. |
17 | Gao J T, Li Q, Guo M M,et al. Improved electrochemical activity of Bi0.5Sr0.5FeO3- δ -Ce0.9Gd0.1O1.95 composite cathode electrocatalyst for solid oxide fuel cells[J]. Ceramics International, 2021, 47(1): 748-754. |
18 | Vijay P, Hosseini S, Tadé M O. A novel concept for improved thermal management of the planar SOFC[J]. Chemical Engineering Research and Design, 2013, 91(3): 560-572. |
19 | Chen D, Lu L, Li J,et al. Percolation micro-model to predict the effective properties of the composite electrode with poly-dispersed particle sizes[J]. Journal of Power Sources, 2011, 196(6): 3178-3185. |
20 | Chen D F, Lin Z J, Zhu H Y, et al. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes[J]. Journal of Power Sources, 2009, 191(2): 240-252. |
21 | Zheng K Q, Ni M. Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity[J]. Science Bulletin, 2016, 61(1):78-85. |
22 | Zheng K Q, Zhang Y X, Li L,et al. On the tortuosity factor of solid phase in solid oxide fuel cell electrodes[J]. International Journal of Hydrogen Energy, 2015, 40(1): 665-669. |
23 | Zheng K Q, Li L, Shen S L,et al. The tortuosity factor effect on solid oxide fuel cell performance[J]. Sustainable Energy Technologies and Assessments, 2020, 38: 100681. |
24 | Ni M, Leung M K H, Leung D Y C. Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48(5): 1525-1535. |
25 | Zheng K Q, Sun Q, Ni M. Local non-equilibrium thermal effects in solid oxide fuel cells with various fuels[J]. Energy Technology, 2013, 1(1):35-41. |
26 | Andersson M, Yuan J L, Sundén B. SOFC modeling considering electrochemical reactions at the active three phase boundaries[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 773-788. |
27 | Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1): 186-200. |
28 | Zheng K Q, Li L, Ni M. Investigation of the electrochemical active thickness of solid oxide fuel cell anode[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12904-12912. |
29 | Andersson M, Nakajima H, Kitahara T,et al. Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1008-1022. |
30 | Wu X J, Yang D N, Wang J H, et al. Temperature gradient control of a solid oxide fuel cell stack[J]. Journal of Power Sources, 2019, 414: 345-353. |
31 | Zheng K Q, Sun Y, Shen S L,et al. A novel cooler for the thermal management of solid oxide fuel cell stack[J]. Sustainable Energy Technologies and Assessments, 2021, 48: 101564. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 245
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||