CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1618-1626.DOI: 10.11949/0438-1157.20191332
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Shuai LIU1(),Xuelei LI2,Shuotian WANG1,Xuhe LI1,Yanjuan WANG1,Xingzhou YUAN1,Jian ZHANG1(),Ruijiang FENG1
Received:
2019-11-05
Revised:
2020-01-21
Online:
2020-04-05
Published:
2020-04-05
Contact:
Jian ZHANG
刘帅1(),李学雷2,王烁天1,李旭贺1,王彦娟1,苑兴洲1,张健1(),封瑞江1
通讯作者:
张健
作者简介:
刘帅(1996—),男,硕士研究生,基金资助:
CLC Number:
Shuai LIU, Xuelei LI, Shuotian WANG, Xuhe LI, Yanjuan WANG, Xingzhou YUAN, Jian ZHANG, Ruijiang FENG. WO3/g-C3N4 modified by CeO2 and its oxidation and desulfurization properties[J]. CIESC Journal, 2020, 71(4): 1618-1626.
刘帅, 李学雷, 王烁天, 李旭贺, 王彦娟, 苑兴洲, 张健, 封瑞江. CeO2改性WO3/g-C3N4光催化氧化脱硫性能[J]. 化工学报, 2020, 71(4): 1618-1626.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 XRD patterns of g-C3N4,WO3,CeO2,WO3/g-C3N4 and CeO2-WO3/g-C3N4a—g-C3N4; b—WO3; c—CeO2; d—WO3(20% mass fraction)/g-C3N4; e—CeO2(2% mass fraction)-WO3(20% mass fraction)/g-C3N4; f—CeO2(5% mass fraction)-WO3(20% mass fraction)/g-C3N4; g—CeO2(8% mass fraction)-WO3(20% mass fraction)/g-C3N4; h—CeO2(10% mass fraction)-WO3(20% mass fraction)/g-C3N4
催化剂 | WO3结晶 度/% | WO3平均晶粒尺寸 / nm |
---|---|---|
WO3(20%质量分数)/g-C3N4 | 76.39 | 66.3 |
CeO2(2%质量分数)-WO3(20%质量分数)/g-C3N4 | 46.92 | 46.4 |
CeO2(5%质量分数)-WO3(20%质量分数)/g-C3N4 | 20.63 | 30.3 |
CeO2(8%质量分数)-WO3(20%质量分数)/g-C3N4 | 10.49 | 27.5 |
CeO2(10%质量分数)-WO3(20%质量分数)/g-C3N4 | 2.71 | 18.6 |
Table 1 Crystal data of WO3 components of catalyst
催化剂 | WO3结晶 度/% | WO3平均晶粒尺寸 / nm |
---|---|---|
WO3(20%质量分数)/g-C3N4 | 76.39 | 66.3 |
CeO2(2%质量分数)-WO3(20%质量分数)/g-C3N4 | 46.92 | 46.4 |
CeO2(5%质量分数)-WO3(20%质量分数)/g-C3N4 | 20.63 | 30.3 |
CeO2(8%质量分数)-WO3(20%质量分数)/g-C3N4 | 10.49 | 27.5 |
CeO2(10%质量分数)-WO3(20%质量分数)/g-C3N4 | 2.71 | 18.6 |
催化剂 | Oβ/(Oα+Oβ) 浓度比/% | Oβ/Oα浓度比/% | Ce3+/(Ce3++Ce4+)摩尔比/% |
---|---|---|---|
CeO2 | 5.67 | 6.3 | 42.11 |
WO3/g-C3N4 | 14.09 | 16.4 | — |
CeO2-WO3/g-C3N4 | 54.49 | 84.1 | 63.78 |
Table 2 XPS peak area data of catalyst
催化剂 | Oβ/(Oα+Oβ) 浓度比/% | Oβ/Oα浓度比/% | Ce3+/(Ce3++Ce4+)摩尔比/% |
---|---|---|---|
CeO2 | 5.67 | 6.3 | 42.11 |
WO3/g-C3N4 | 14.09 | 16.4 | — |
CeO2-WO3/g-C3N4 | 54.49 | 84.1 | 63.78 |
Fig.10 Catalytic performances of fresh and reused CeO2(5%,mass fraction)-WO3(20% ,mass fraction)/g-C3N4(reaction conditions: 80℃, O/S=5, 180 min, payload of CeO2 5% (mass))
1 | Hong Y Z, Jiang Y H, Li C S, et al. In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants[J]. Appl. Catal. B: Environ. , 2016, 180: 663-673. |
2 | Katsumata H, Sakai T, Suzuki T, et al. Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light[J]. Ind. Eng. Chem. Res. , 2014, 53(19): 8018-8025. |
3 | Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401. |
4 | Miao X L, Shen X P, Wu J J, et al. Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/AgBr with enhanced visible light photocatalystic activity[J]. Appl. Catal. A-Gen. , 2017, 539: 104-113. |
5 | Huang L Y, Xu H, Li Y P, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalystic activity[J]. Dalton Trans. , 2013, 42(24): 8606-8616. |
6 | Zhao Z G, Miyauchi M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts[J]. Angew. Chem.-Int. Edit. , 2008, 47(37): 7051-7055. |
7 | Aslam I, Cao C, Tanveer M, et al. The synergistic effect between WO3 and g-C3N4 towards efficient visible-light-driven photocatalytic performance[J]. New. J. Chem. , 2014, 38(11): 5462-5469. |
8 | Wang F, Li W, Feng X, et al. Decoration of Pt on Cu/Co double-doped CeO2 nanospheres and their greatly enhanced catalytic activity[J]. Chem. Sci. , 2016, 7(3): 1867-1873. |
9 | 曹国强. 助剂修饰半导体光催化材料的制备及其研究性能[D]. 武汉: 武汉理工大学, 2015. |
Cao G Q. Preparation and properties of semiconductor photocatalytic materials modified by auxiliaries[D]. Wuhan: Wuhan University of Technology, 2015. | |
10 | Li R G, Han H X, Zhang F X, et al. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4[J]. Energy. Sci. , 2014, 7(4): 1369-1376. |
11 | 刘锐. 银修饰型纳米复合材料的制备、表征与可见光光催化性能[D]. 武汉: 武汉理工大学, 2013. |
Liu R. Preparation, characterization and photocatalytic performance of silver modified nanocomposites[D]. Wuhan: Wuhan University of Technology, 2013. | |
12 | 刘帅, 刘进博, 李旭贺, 等. WO3/g-C3N4异质结催化剂的制备及其氧化脱硫性能[J]. 燃料化学学报, 2019, 47(7): 852-862. |
Liu S, Liu J B, Li X H, et al. Preparation of WO3/g-C3N4 heterojunction catalyst and its oxidation and desulfurization performance[J]. J. Fuel. Chem. Techno. , 2019, 47(7): 852-862. | |
13 | 桂明生, 王鹏飞, 袁东, 等. Bi2WO6/g-C3N4复合型催化剂的制备及其可见光光催化性[J]. 无机化学学报, 2013, 29(10): 2057-2064. |
Gui M S, Wang P F, Yuan D, et al. Preparation of Bi2WO6/g-C3N4 composite catalyst and its visible photocatalytic performance[J]. J. Inorg. Chem. , 2013, 29(10): 2057-2064. | |
14 | Amoozadeh A, Rahmani S. Nano-WO3-supported sulfonic acid: new efficient and high reusable heterogeneous nanocatalyst[J]. J. Mol. Catal. A: Chem. , 2015, 396: 96-107. |
15 | Cai W D, Chen F, Shen X X, et al. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping[J]. Appl. Catal. B: Environ. , 2010, 101(1/2): 160-168. |
16 | Lei W W, Portenhault D, Dimova R, et al. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors[J]. J. Chem. Soc. , 2011, 133(18): 5300-5303. |
17 | 王丽, 赵辉. WO3/N-TiO2异质节可见光催化降解亚甲基蓝[J]. 工业水处理, 2016, 36(11): 78-81. |
Wang L, Zhao H. Visible light catalytic degradation of methylene blue by WO3/N-TiO2 heterogeneous[J]. Ind. Water Treat., 2016, 36(11): 78-81. | |
18 | Claude B, Ahmed B, Jearr C. A spectroscopic characterization of the reduction of ceria from electronic transitions of intrinsic point defects [J]. J. Phys. Chem. , 1994, 98(25): 6392-6398. |
19 | 张启涛. 高效g-C3N4基纳米复合异质结光催化剂的制备及其光催化性能的研究[D]. 扬州: 扬州大学, 2017. |
Zhang Q T. Preparation and photocatalytic performance of g-C3N4-based nanocomposite heterojunction photocatalyst[D]. Yangzhou: Yangzhou University, 2017. | |
20 | Katsumata H, Tachi Y, Suzuki T, et al. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. RSC. Adv. , 2014, 4(41): 21405-21409. |
21 | Luo J, Zhou X S, Ma L, et al. Enhancing visible-light photocatalytic activity of g-C3N4 by doping phosphorus and coupling with CeO2 for the degradation of methyl orange under visible light irradiation[J]. RSC Adv. , 2015, 5(84): 68728-68735. |
22 | Li C H, Li K Z, Wang H, et al. Soot combustion over Ce1-xFexO2-δand CeO2/Fe2O3 catalysts: roles of solid solution and interfacial interactions in the mixed oxides[J]. Appl. Surf. Sci. , 2016, 390: 513-525. |
23 | Li H, Wang G F, Zhang F, et al. Surfactant-assisted synthesis of CeO2 nanoparticles and their application in wastewater treatment[J]. RSC Adv. , 2012, 2(32): 12413-12423. |
24 | 王青春. 纳米氧化铈/碳复合载体的制备、结构及催化性能研究[D]. 北京: 北京科技大学, 2016. |
Wang Q C. Preparation, structure and catalytic performance of nanometer cerium oxide/carbon composite carrier[D]. Beijing: University of Science and Technology Beijing, 2016. | |
25 | Zhang R, Zhong Q, Zhao W L, et al. Promotional effect of fluorine on the selective catalytic reduction of NO with NH3 over CeO2-TiO2 catalyst at low temperature[J]. Appl. Surf. Sci. , 2014, 289: 237-244. |
26 | Chen L, Li J H, Ge M F. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. J. Phys. Chem. C, 2009, 113(50): 21177-21184. |
27 | Shan W P, Liu F D, He H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl. Catal. B: Environ. , 2012, 115/116: 100-106. |
28 | Zeng L P, Li K Z, Wang H, et al. CO oxidation on Au / α-Fe2O3-hollow catalysts: general synthesis and structural dependence[J]. J. Phys. Chem. C, 2017, 121(23): 12696-12710. |
29 | 牛微, 王刚, 董颖男, 等. Ce掺杂六方相WO3光催化剂的制备及其光解水制氢性能[J]. 人工晶体学报, 2016, 45(1): 187-191. |
Niu W, Wang G, Dong Y N, et al. Preparation of Ce doped hexagonal-phase WO3 photocatalyst and its photolysis performance for hydrogen production[J]. J. Synth. Cryst. , 2016, 45(1): 187-191. | |
30 | Senanayake S D, Rodriguez J A, Stacchiola D. Electronic metal-support interactions and the production of hydrogen through the water-gas shift reaction and ethanol steam reforming: fundamental studies with well-defined model catalysts[J]. Top. Catal. , 2013, 56(15): 1488-1498. |
31 | Xiao X, Zhong H, Zheng C X, et al. Deep oxidative desulfurization of dibenzothiophene using a flower-like WO3·H2O catalyst in an organic biphasic system[J]. Chem. Eng. J. , 2016, 304: 908-916. |
32 | 卞振锋, 阮大明, 李和兴. Pt负载对TiO2光催化氧化还原的影响[J]. 中国科技论文, 2016, 11(18): 2091-2095. |
Bian Z F, Ruan D M, Li H X. Effect of Pt loading on photocatalytic REDOX of TiO2[J]. Chin. J. Sci. Technol. , 2016, 11(18): 2091-2095. |
[1] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[7] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[8] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[9] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[10] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[11] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[12] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[13] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[14] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[15] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||