CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2049-2060.DOI: 10.11949/0438-1157.20191351
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Mei XU(),Huaiwu PENG,Dongsheng NIU,Xiao WANG,Bin XIAO,Zhi ZHOU,Yanglong DUAN,Junfeng ZHANG
Received:
2019-11-08
Revised:
2020-03-13
Online:
2020-05-05
Published:
2020-05-05
Contact:
Mei XU
通讯作者:
徐玫
作者简介:
徐玫(1989—),女,硕士,工程师,CLC Number:
Mei XU, Huaiwu PENG, Dongsheng NIU, Xiao WANG, Bin XIAO, Zhi ZHOU, Yanglong DUAN, Junfeng ZHANG. Study on dynamic and static performance of external tubular molten salt receiver[J]. CIESC Journal, 2020, 71(5): 2049-2060.
徐玫, 彭怀午, 牛东圣, 王晓, 肖斌, 周治, 段杨龙, 张俊峰. 外露管式熔盐吸热器动静态特性研究[J]. 化工学报, 2020, 71(5): 2049-2060.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
额定功率/MW | 42.2 |
吸热管长度/m | 6.2 |
管屏数目 | 24 |
各管屏吸热管数目 | 32 |
吸热器直径/m | 5.1 |
吸热管外径/m | 0.025 |
吸热管壁厚/m | 0.00125 |
Table 1 Structure characteristics of Solar Two receiver
参数 | 数值 |
---|---|
额定功率/MW | 42.2 |
吸热管长度/m | 6.2 |
管屏数目 | 24 |
各管屏吸热管数目 | 32 |
吸热器直径/m | 5.1 |
吸热管外径/m | 0.025 |
吸热管壁厚/m | 0.00125 |
工况 | 工况参数 | 模型计算结果验证 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
环境温度/℃ | 风速/(m/s) | 平均能流密度/(kW/m2) | 熔盐流量/(kg/s) | 入口熔盐温度/℃ | 实测出口熔盐温度/℃ | 计算出口熔盐温度/℃ | 偏差/% | 实测效率 | 计算效率 | 偏差/% | |
1 | 32 | 0.6 | 341 | 80 | 294 | 555 | 556 | 0.18 | 0.888 | 0.895 | 0.80 |
2 | 33 | 1.2 | 372 | 90 | 300 | 552 | 555 | 0.54 | 0.884 | 0.899 | 1.64 |
3 | 33 | 1 | 373 | 90 | 304 | 556 | 560 | 0.69 | 0.88 | 0.898 | 2.05 |
4 | 14 | 2 | 289 | 67 | 302 | 564 | 562 | -0.34 | 0.881 | 0.878 | -0.34 |
5 | 18 | 3.2 | 340 | 78 | 303 | 564 | 567 | 0.55 | 0.874 | 0.882 | 0.92 |
6 | 18 | 0.9 | 302 | 69 | 301 | 564 | 567 | 0.45 | 0.87 | 0.884 | 1.63 |
7 | 17 | 2.5 | 311 | 70 | 298 | 564 | 567 | 0.55 | 0.871 | 0.827 | 1.04 |
Table 2 Comparisons between simulation results and test results
工况 | 工况参数 | 模型计算结果验证 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
环境温度/℃ | 风速/(m/s) | 平均能流密度/(kW/m2) | 熔盐流量/(kg/s) | 入口熔盐温度/℃ | 实测出口熔盐温度/℃ | 计算出口熔盐温度/℃ | 偏差/% | 实测效率 | 计算效率 | 偏差/% | |
1 | 32 | 0.6 | 341 | 80 | 294 | 555 | 556 | 0.18 | 0.888 | 0.895 | 0.80 |
2 | 33 | 1.2 | 372 | 90 | 300 | 552 | 555 | 0.54 | 0.884 | 0.899 | 1.64 |
3 | 33 | 1 | 373 | 90 | 304 | 556 | 560 | 0.69 | 0.88 | 0.898 | 2.05 |
4 | 14 | 2 | 289 | 67 | 302 | 564 | 562 | -0.34 | 0.881 | 0.878 | -0.34 |
5 | 18 | 3.2 | 340 | 78 | 303 | 564 | 567 | 0.55 | 0.874 | 0.882 | 0.92 |
6 | 18 | 0.9 | 302 | 69 | 301 | 564 | 567 | 0.45 | 0.87 | 0.884 | 1.63 |
7 | 17 | 2.5 | 311 | 70 | 298 | 564 | 567 | 0.55 | 0.871 | 0.827 | 1.04 |
系数 | 出口熔盐温度变化 百分比/% | 吸热器表面最高温度 变化百分比/% | 吸热器散热功率变化 百分比/% | 最高轴向温度梯度变化百分比/% | 效率变化百分比/% |
---|---|---|---|---|---|
二次项系数 | -0.00009 | -0.00037 | 0.00231 | -0.00049 | -0.00024 |
一次项系数 | 0.45123 | 0.47237 | 0.81103 | 0.94977 | 0.01107 |
常数项 | 0.00286 | 0.00251 | 0.00286 | -0.00004 | -0.00017 |
Table 3 Polynomial coefficient of relationship between change percentage of direct normal irradiance and receiver performance parameters
系数 | 出口熔盐温度变化 百分比/% | 吸热器表面最高温度 变化百分比/% | 吸热器散热功率变化 百分比/% | 最高轴向温度梯度变化百分比/% | 效率变化百分比/% |
---|---|---|---|---|---|
二次项系数 | -0.00009 | -0.00037 | 0.00231 | -0.00049 | -0.00024 |
一次项系数 | 0.45123 | 0.47237 | 0.81103 | 0.94977 | 0.01107 |
常数项 | 0.00286 | 0.00251 | 0.00286 | -0.00004 | -0.00017 |
系数 | 出口熔盐温度变化 百分比/% | 吸热器表面最高温度 变化百分比/% | 吸热器散热功率变化 百分比/% | 最高轴向温度梯度变化百分比/% | 效率变化百分比/% |
---|---|---|---|---|---|
二次项系数 | 0.04076 | 0.03655 | 0.01762 | 0.01597 | 6.29842 |
一次项系数 | -2.18062 | -2.19347 | -1.32236 | -1.26851 | 24.86554 |
常数项 | 0.05639 | 0.05055 | 0.13319 | 0.46436 | 0.13108 |
Table 4 Polynomial coefficient of relationship between change percentage of salt flow rate and receiver performance parameters
系数 | 出口熔盐温度变化 百分比/% | 吸热器表面最高温度 变化百分比/% | 吸热器散热功率变化 百分比/% | 最高轴向温度梯度变化百分比/% | 效率变化百分比/% |
---|---|---|---|---|---|
二次项系数 | 0.04076 | 0.03655 | 0.01762 | 0.01597 | 6.29842 |
一次项系数 | -2.18062 | -2.19347 | -1.32236 | -1.26851 | 24.86554 |
常数项 | 0.05639 | 0.05055 | 0.13319 | 0.46436 | 0.13108 |
1 | Lovegrove K, Watt M, Passey R, et al. Realising the potential of concentrating solar power in Australia: summary for stakeholders[R]. Australia: Australian Solar Institute Pty. Ltd., 2012. |
2 | Franchini G, Perdichizzi A, Ravelli S, et al. A comparative study between parabolic trough and solar tower technologies in solar rankine cycle and integrated solar combined cycle plants[J]. Solar Energy, 2013, 98(pt. C): 302-314. |
3 | Wagner S J, Rubin E S. Economic implications of thermal energy storage for concentrated solar thermal power[J]. Renewable Energy, 2014, 61(1): 81-95. |
4 | Tehrani S S M, Taylor R A, Nithyanandam K, et al. Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant[J]. Solar Energy, 2017, 153(1): 153-172. |
5 | Collado F J, Gómez A, Turégano J A. An analytic function for the flux density due to sunlight reflected from a heliostat[J]. Solar Energy, 1986, 37(3): 215-234. |
6 | 陈将. 塔式太阳能热电系统的聚光仿真与聚焦策略优化[D]. 杭州: 浙江大学, 2015. |
Chen J. Concentrating simulation and aiming strategy optimization of solar tower power system[D]. Hangzhou: Zhejiang University, 2015. | |
7 | 常春, 张强强, 李鑫. 周向非均匀热流边界条件下太阳能高温吸热管内湍流传热特性研究[J]. 中国电机工程学报, 2012, 32(17): 104-109. |
Chang C, Zhang Q Q, Li X. Turbulent heat transfer characteristics in solar thermal absorber tubes with circumferentially non-uniform heat flux boundary condition[J]. Proceedings of the CSEE, 2012, 32(17): 104-109. | |
8 | Zheng Z J, Li M J, He Y L. Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux[J]. Applied Energy, 2017, 185(2): 1152-1161. |
9 | Prairie M R, Pacheco J E, Gilbert R L, et al. Performance of the solar two central receiver power plant[R]. Albuquerque: Sandia National Laboratories, 1998. |
10 | Litwin R Z. Receiver system: lessons learned from solar two[R]. Albuquerque: Sandia National Laboratories, 2002. |
11 | 盛玲霞, 李佳燕, 赵豫红. 塔式太阳能电站接收器的建模及动态仿真[J]. 化工学报, 2016, 67(3): 737-742. |
Sheng L X, Li J Y, Zhao Y H. Modeling and dynamic simulation of receiver in a solar tower power station[J]. CIESC Journal, 2016, 67(3): 737-742. | |
12 | 王建楠, 李鑫, 常春. 太阳能塔式热发电站熔融盐吸热器过热故障的影响因素分析[J]. 中国电机工程学报, 2010, 30(29): 107-114. |
Wang J N, Li X, Chang C. Analysis of the influence factors on the overheat of molten salt receiver in solar tower power plants[J]. Proceedings of the CSEE, 2010, 30(29): 107-114. | |
13 | Du B C, He Y L, Zheng Z J, et al. Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver[J]. Applied Thermal Engineering, 2016, 99: 741-750. |
14 | 刘占斌, 何雅玲, 王坤, 等. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336. |
Liu Z B, He Y L, Wang K, et al. Research on effects of foam filling types on heat transfer of supercritical CO2 flow in tube[J]. CIESC Journal, 2019, 70(9): 3329-3336. | |
15 | 张莉, 方嘉宾, 魏进家. 圆锥螺旋管腔式熔融盐吸热器热性能的数值研究[J]. 太阳能学报, 2019, 48(7): 1832-1836. |
Zhang L, Fang J B, Wei J J. Numerical study on a conical spiral tube cavity receiver with molten salt[J]. Acta Energiae Solaris Sinica, 2019, 48(7): 1832-1836. | |
16 | 沈向阳, 张奇淄, 陆建峰, 等. 熔盐吸热管非稳态对流换热特性[J]. 化工学报, 2012, 63(5): 36-40. |
Shen X Y, Zhang Q Z, Lu J F, et al. Unsteady convective heat transfer performances of molten salt in receiver tube [J]. CIESC Journal, 2012, 63(5): 36-40. | |
17 | 王沛, 李嘉宝, 赵亮, 等. 塔式太阳能熔盐吸热器传热特性及分析[J]. 中国电机工程学报, 2019, 39(12): 3605-3613. |
Wang P, Li J B, Zhao L, et al. Thermal and exergy performance of molten salt external cylindrical receiver of solar power towers[J]. Proceedings of the CSEE, 2019, 39(12): 3605-3613. | |
18 | 郑建涛, 严俊杰, 韩临武, 等. 多点聚焦的太阳能柱式吸热器能流分布研究[J]. 中国电机工程学报, 2015, 35(11): 2796-2803. |
Zheng J T, Yan J J, Han L W, et al. Analysis of the solar thermal cylinder receiver heat flux distribution under multi-aiming point strategy[J]. Proceedings of the CSEE, 2015, 35(11): 2796-2803. | |
19 | Tehrani S S M, Taylor R A. Off-design simulation and performance of molten cavity receivers in solar tower plants under realistic operational modes and control strategies[J]. Applied Energy, 2016, 179(1): 698-715. |
20 | Xu E S, Yu Q, Wang Z F, et al. Modeling and simulation of 1MW DAHAN solar thermal power tower plant[J]. Renewable Energy, 2011, 36(2): 848-857. |
21 | 徐二树, 余强, 杨志平, 等. 塔式太阳能热发电腔式吸热器动态仿真模型[J]. 中国电机工程学报, 2010, 30(32): 115-120. |
Xu E S, Yu Q, Yang Z P, et al. Solar thermal power tower cavity receiver dynamic simulation mode[J]. Proceedings of the CSEE, 2010, 30(32):115-120. | |
22 | 高维, 徐蕙, 徐二树, 等. 塔式太阳能热发电吸热器运行安全性研究[J]. 中国电机工程学报, 2013, 33(2): 92-97. |
Gao W, Xu H, Xu E S, et al. Research on operation security of solar thermal tower plant receiver[J]. Proceedings of the CSEE, 2013, 33(2): 92-97. | |
23 | 张强强, 李鑫, 常春, 等. 多云气象条件下熔融盐腔式吸热器的热性能分析[J]. 中国电机工程学报, 2014, 34(8): 1291-1296. |
Zhang Q Q, Li X, Chang C, et al. Thermal performance analysis of molten salt cavity receivers under cloudy conditions[J]. Proceedings of the CSEE, 2014, 34(8): 1291-1296. | |
24 | 邹琴梅. 塔式太阳能熔盐吸热器的传热特性研究与设计[D]. 杭州: 浙江大学, 2014. |
Zou Q M. Study of flow and heat transfer performance and design of molten receiver in solar power plants[D]. Hangzhou: Zhejiang University, 2014. | |
25 | 王幸智. 外露管式太阳能熔盐吸热器的传热研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
Wang X Z. Research on heat transfer performance of external tubular receiver using molten salt as HTF for tower solar plant[D]. Harbin: Harbin Institute of Technology, 2013. | |
26 | 李嘉宝, 王沛, 赵亮. 基于分布参数模型的塔式熔盐吸热器换热过程动态特性研究[J]. 可再生能源, 2018, 36(7): 991-996. |
Li J B, Wang P, Zhao L. Study on dynamic characteristics of heat exchange process of a tower type molten salt receiver based on distributed parameter model[J]. Renewable Energy Resources, 2018, 36(7): 991-996. | |
27 | Duffie J A, Beckman W A. Solar Engineering of Thermal Processes[M]. Hoboken: John Wiley and Sons Inc., 2006: 148. |
28 | Pacneco J E, Bradshaw R W, Dawson D B, et al. Final test and evaluation results from the solar two project[R]. Albuquerque: Sandia National Laboratories, 2001. |
29 | 武君, 卢日时, 赵欢欢, 等. 塔式太阳能热发电吸热器技术进展[J]. 应用能源技术, 2013, 33(2): 36-41. |
Wu J, Lu R S, Zhao H H, et al. The development of solar center receivers for solar power tower[J]. Applied Energy Technology, 2013, 33(2): 36-41. | |
30 | Yang M L, Yang X X, Zhang S S. Performance comparisons of solar central receivers and working fluids for solar power tower systems[J]. Journal of Shaanxi University of Science&Technology(Natural Science Edition), 2008, 26(5): 21-27. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||