1 |
Choi S U S. Enhancing thermal conductivity of fluids with nano-particles [J]. ASME-Publications-Fed, 1995, 231(66): 99-103.
|
2 |
Vafaei S, Wen D. Convective heat transfer of aqueous alumina nanosuspensions in a horizontal mini-channel[J]. Int. J. Heat Mass Transfer, 2012, 48: 349-357.
|
3 |
Vafaei S. Nanofluid pool boiling heat transfer phenomenon [J]. Powder Technology, 2015, 277: 181-192.
|
4 |
许世民, 郎中敏, 王亚雄, 等. 羟基化多壁碳纳米管/R141b纳米流体核沸腾[J]. 化工学报, 2015, 66(11): 4424-4430.
|
|
Xu S M, Lang Z M, Wang Y X, et al. Nucleate boiling heat transfer of hydroxylated carbon nano-tubes/R141b nanofluids on smooth plate[J]. CIESC Journal, 2015, 66(11): 4424-4430.
|
5 |
Li W F, Jia Q L, Dan Y L, et al. The effect of concentration on transient pool boiling heat transfer of graphene-based aqueous nanofluids[J]. Int. J. Therm. Sci., 2015, 91: 83-95.
|
6 |
Amir A, Seyed A A F, Sarah M, et al. Pool boiling heat transfer characteristics of graphene-based aqueous nanofluids[J]. J. Therm. Anal. Calorim., 2019, 135: 697-711.
|
7 |
Hama J, Kima J, Cho H. Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution[J]. Appl. Therm. Eng., 2016, 108: 1020-1032.
|
8 |
Kim S J, Bang I C, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. Int. J. Heat Mass Transfer, 2007, 50: 4105-4116.
|
9 |
Park S D, Lee S W, Kang S, et al. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux[J]. Appl. Phys. Lett., 2010, 97: 023103.
|
10 |
刘海洪, 李先宁, 蔡杰. 浅水湖泊升流循环复氧装置的研制与性能[J]. 化工学报, 2014, 65(2): 718-723.
|
|
Liu H H, Li X N, Cai J. Development and performance of flowing-cycle reoxygenation devices for shallow lake[J]. CIESC Journal, 2014, 65(2): 718-723.
|
11 |
Yao S, Teng Z. Effect of nanofluids on boiling heat transfer performance[J]. Appl. Sci., 2019, 9: 2818.
|
12 |
Nazari A, Saedodin S. An experimental study of the nanofluid pool boiling on the aluminium surface[J]. J. Therm. Anal. Calorim., 2019, 135: 1753-1762.
|
13 |
Yadav N, Jaiswal A K, Dey K K, et al. Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response[J]. Mater. Chem. Phys., 2018, 218: 10-17.
|
14 |
Ding G, Jiao W, Chen L, et al. A self-sensing, superhydrophobic, heterogeneous graphene network with controllable adhesion behavior[J]. J. Mater. Chem. A, 2018, 35: 16992-17000.
|
15 |
Hwang W K, Choy S, Song S L, et al. Enhancement of nanofluid stability and critical heat flux in pool boiling with nanocellulos [J]. Carbohyd. Polym., 2019, 213: 393-402.
|
16 |
Ko Y G, Do T, Chun Y, et al. CeO2-covered nanofiber for highly efficient removal of phosphorus from aqueous solution[J]. J. Hazard. Mater., 2016, 307: 91-98.
|
17 |
Jayanthi M, Lavanya T, Saradha N A, et al. Superior photocatalytic performance of CeO2 nanoparticles and reduced graphene oxide nanocomposite prepared by low cost co-precipitation method[J]. J. Nanosci. Nanotechno., 2018, 18(5): 3257-3265.
|
18 |
Hu F F, Zhao S P, Yin X Q. Size-controllable synthesis of CeO2 nanoparticles via microwave assisted acrylamide gel method and their fluorescent properties[J]. J. Mater. Sci.-Mater. El., 2018, 29(19): 16747-16757.
|
19 |
Ji Z Y, Shen X P, Li M Z, et al. Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties[J]. Nanotechnology, 2013, 24(13): 115603.
|
20 |
Li L, Chen Y S. Preparation of nanometer-scale CeO2 particles via a complex thermo-decomposition method[J]. Met. Sci. Eng. A-Struct., 2005, 406(1/2): 180-185.
|
21 |
Bugayeva N, Robinson J. Synthesis of hydrated CeO2 nanowires and nanoneedles[J]. Mater. Sci. Tech.-Lond., 2007, 23(2): 237-241.
|
22 |
Sharafeldin M A, Grof G. Evacuated tube solar collector performance using CeO2/water nanofluid[J]. J. Clean. Prod., 2018, 185: 347-356.
|
23 |
Sharafeldin M A, Grof G. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation [J]. Energy Convers. Manage., 2018, 155: 32-41.
|
24 |
Stalin P M J, Arjunan T V, Matheswaran M M, et al. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector[J]. J. Therm. Anal. Calorim., 2019, 135: 29-44.
|
25 |
Mohan V M, Sajeeb A M. Improving the efficiency of DASC by adding CeO2/CuO hybrid nanoparticles in water [J]. Adv. Sci. Lett., 2018, 24(8): 5651-5656.
|
26 |
Sundar L S, Syam K V. Heat transfer enhancements of low volume concentration Al2O3 nanofluid and with longitudinal strip inserts in a circular tube [J]. Int. J. Heat Mass Transfer, 2010, 53(19/20): 4280-4286.
|
27 |
Kiyomura I S, Manetti L L, Cunha A P. An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water[J]. Int. J. Heat Mass Transfer, 2017, 106: 666-674.
|
28 |
Kang W, Shin Y, Cho H. Experimental investigation on the heat transfer performance of evacuated tube solar collector using CuO nanofluid and water[J]. J. Mech. Sci. Technol., 2019, 33(3): 1477-1485.
|
29 |
Khoshvaght A M, Arani-Lahtari Z K A, Morteza A L Z. Proposing new configurations for twisted square channel (TSC): nanofluid as working fluid [J]. Appl. Phys. Lett., 2016, 108: 709-719
|
30 |
李占双, 闫慧君, 尤佳, 等. 水热法合成纳米CeO2 及其光催化性质研究[J]. 化学试剂, 2008, 30(4): 262-264+268.
|
|
Li Z S, Yan H J, You J, et al. Synthesis of nano-CeO2 by hydrothermal method and its photocatalytic properties [J]. Chemical Reagent, 2008, 30(4): 262-264+268.
|
31 |
樊小伟, 梁小平, 王荣涛. 溶胶-凝胶法制备纳米CeO2晶体[J]. 化工新型材料, 2008, 36(9): 79-81.
|
|
Fan X W, Liang X P, Wang R T. The preparation of nano CeO2 by sol-gel method[J]. New Chemical Materials, 2008, 36(9): 79-81.
|
32 |
Karimzadehkhouei M, Shojaeian M, Sendur K, et al. The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling [J]. Int. J. Heat Mass Transfer, 2017, 109: 157-166.
|
33 |
Cole R. Boiling nucleation[J]. Advances in Heat Transfer, 1974, 10: 85-166.
|
34 |
庄大伟, 杨艺菲, 胡海涛, 等. 竖直翅片间液桥体积计算模型[J]. 化工学报, 2016, 67(10): 4080-4085.
|
|
Zhuang D W, Yang Y F, Hu H T, et al. Model for calculating water bridge volume retained between vertical fins[J]. CIESC Journal, 2016, 67(10): 4080-4085.
|