CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1540-1553.DOI: 10.11949/0438-1157.20191503
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Qi SONG(),Zhi YANG(),Ying CHEN,Xianglong LUO,Jianyong CHEN,Yingzong LIANG
Received:
2019-12-12
Revised:
2020-02-12
Online:
2020-04-05
Published:
2020-04-05
Contact:
Zhi YANG
通讯作者:
杨智
作者简介:
宋祺(1995—),男,硕士研究生,基金资助:
CLC Number:
Qi SONG, Zhi YANG, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Effect of local geometry on droplet formation in flow-focusing microchannel[J]. CIESC Journal, 2020, 71(4): 1540-1553.
宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Schematic diagram of 2D geometric structure of cross-focusing microchannel(subscripts c and d represent continuous and dispersed phase, respectively)
wori/μm | θ2/ (°) | t1 /ms | t2/ms | t3 /ms | (t2-t1)/ms | (t3-t2)/ms | (t3-t2)/t3 |
---|---|---|---|---|---|---|---|
50 | 0 | 0 | 1.24 | 1.693 | 1.24 | 0.453 | 26.757% |
20 | 0 | 1.195 | 1.621 | 1.195 | 0.426 | 26.280% | |
40 | 0 | 1.292 | 1.717 | 1.292 | 0.425 | 24.753% | |
75 | 0 | 0 | 1.815 | 2.686 | 1.815 | 0.871 | 32.427% |
20 | 0 | 1.68 | 2.459 | 1.68 | 0.779 | 31.679% | |
40 | 0 | 2.036 | 2.425 | 2.036 | 0.389 | 16.041% | |
100 | 0 | 0 | 2.12 | 3.865 | 2.12 | 1.745 | 45.148% |
20 | 0 | 1.892 | 3.606 | 1.892 | 1.714 | 47.532% | |
40 | — | — | — | — | — | — |
Table 1 Comparison of droplet growth and squeez fracture under different channel configurations
wori/μm | θ2/ (°) | t1 /ms | t2/ms | t3 /ms | (t2-t1)/ms | (t3-t2)/ms | (t3-t2)/t3 |
---|---|---|---|---|---|---|---|
50 | 0 | 0 | 1.24 | 1.693 | 1.24 | 0.453 | 26.757% |
20 | 0 | 1.195 | 1.621 | 1.195 | 0.426 | 26.280% | |
40 | 0 | 1.292 | 1.717 | 1.292 | 0.425 | 24.753% | |
75 | 0 | 0 | 1.815 | 2.686 | 1.815 | 0.871 | 32.427% |
20 | 0 | 1.68 | 2.459 | 1.68 | 0.779 | 31.679% | |
40 | 0 | 2.036 | 2.425 | 2.036 | 0.389 | 16.041% | |
100 | 0 | 0 | 2.12 | 3.865 | 2.12 | 1.745 | 45.148% |
20 | 0 | 1.892 | 3.606 | 1.892 | 1.714 | 47.532% | |
40 | — | — | — | — | — | — |
1 | 林炳承, 秦建华. 图解微流控芯片实验室[M].北京: 科学出版社, 2008: 473. |
Lin B C, Qin J H. Graphic Laboratory on a Microfluidic Chip [M]. Beijing: Science Press, 2008: 473. | |
2 | Chan E M, Alivisatos A P, Mathies R A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets[J]. Journal of the American Chemical Society, 2005, 127(40): 13854-13861. |
3 | Liu K, Ding H J, Liu J, et al. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device[J]. Langmuir, 2006, 22(22): 9453-9457. |
4 | Chen H, Zhang F, Fu S, et al. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J]. Advanced Materials, 2006, 18(23): 3089-3093. |
5 | Xu Q, Hashimoto M, Dang T T, et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery[J]. Small, 2009, 5(13): 1575-1581. |
6 | Frenz L, El Harrak A, Pauly M, et al. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles[J]. Angew Chem. Int. Ed. Engl., 2008, 47(36): 6817-6820. |
7 | Hung L H, Choi K M, Tseng W Y, et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis[J]. Lab Chip, 2006, 6(2): 174-178. |
8 | Hoájeong E, Chunákim K, Sangágo J. Microfluidics assisted synthesis of well-defined spherical polymeric microcapsules and their utilization as potential encapsulants[J]. Lab on a Chip, 2006, 6(6): 752-756. |
9 | Bardin D, Martz T D, Sheeran P S, et al. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy[J]. Lab on a Chip, 2011, 11(23): 3990-3998. |
10 | Chen H, Chang X, Weng T, et al. A study of microemulsion systems for transdermal delivery of triptolide[J]. Journal of Controlled Release, 2004, 98(3): 427-436. |
11 | Dames P, Gleich B, Flemmer A, et al. Targeted delivery of magnetic aerosol droplets to the lung[J]. Nature Nanotechnology, 2007, 2(8): 495. |
12 | Ganan-Calvo A M, Montanero J M, Martin-Banderas L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing[J]. Adv. Drug Deliv. Rev., 2013, 65(11/12): 1447-1469. |
13 | Hung L H, Teh S Y, Jester J, et al. PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches[J]. Lab on a Chip, 2010, 10(14): 1820-1825. |
14 | Huebner A, Bratton D, Whyte G, et al. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays[J]. Lab Chip, 2009, 9(5): 692-698. |
15 | Hufnagel H, Huebner A, Gulch C, et al. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets[J]. Lab Chip, 2009, 9(11): 1576-1582. |
16 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys. Rev. Lett., 2001, 86(18): 4163-4166. |
17 | 魏丽娟, 朱春英, 付涛涛, 等. T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64(2): 517-523. |
Wei L J, Zhu C Y, Fu T T, et al. Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64(2): 517-523. | |
18 | 马朋成, 朱春英, 付涛涛, 等. 不对称T型微通道内液滴的无阻塞破裂动力学[J]. 化工学报, 2018, 69(11): 4633-4639. |
Ma P C, Zhu C Y, Fu T T, et al. Dynamics of droplet breakup with permanent tunnel in asymmetric microfluidic T-junction[J]. CIESC Journal, 2018, 69(11): 4633-4639. | |
19 | Zheng B, Tice J D, Roach L S, et al. A droplet‐based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction[J]. Angewandte Chemie International Edition, 2004, 43(19): 2508-2511. |
20 | 刘赵淼, 刘丽昆, 申峰. Y 型微通道两相流内部流动特性[J]. 力学学报, 2014, 46(2): 209-216. |
Liu Z M, Liu L K, Shen F. Two-phase flowcharacteristics in Y-junction microchannel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 209-216. | |
21 | 刘赵淼, 刘丽昆, 申峰. Y 型微通道中两相界面特性变化分析[J]. 机械工程学报, 2014, 50(8): 189-196. |
Liu Z M, Liu L K, Shen F. Numerical analysis on two-phase flow characteristics at convection microfluidic Y-junctions[J]. Journal of Mechanical Engineering, 2014, 50(8): 189-196. | |
22 | 马蕊, 付涛涛, 张沁丹, 等. Y聚焦型微通道内磁流体液滴的生成与调控[J]. 化工学报, 2018, 69(2): 602-610. |
Ma R, Fu T T, Zhang Q D, et al. Formation and manipulation of ferrofluid droplets in Y-shaped flow-focusing microchannel[J]. CIESC Journal, 2018, 69(2): 602-610. | |
23 | Dang T D, Kim Y H, Kim H G, et al. Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1308-1313. |
24 | 王维萌, 马一萍, 陈斌. 十字交叉微通道内微液滴生成过程的数值模拟[J]. 化工学报, 2015, 66(5): 1633-1641. |
Wang W M, Ma Y P, Chen B. Numerical simulation of droplet generation in crossing micro-channel[J]. CIESC Journal, 2015, 66(5): 1633-1641. | |
25 | 张沁丹, 付涛涛, 朱春英, 等. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504-511. |
Zhang Q D, Fu T T, Zhu C Y, et al. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2): 504-511. | |
26 | 张翀, 付涛涛, 姜韶堃, 等. 聚焦十字型微通道内高黏流体中气泡生成动力学[J]. 化工学报, 2018, 69(2): 650-654. |
Zhang C, Fu T T, Jiang S K, et al. Bubble forming dynamics of highly viscous fluids in microfluidic flow-focusing cross channel device[J]. CIESC Journal, 2018, 69(2): 650-654. | |
27 | Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351. |
28 | 兰文杰, 李少伟, 徐建鸿, 等. 同轴环管微流控设备内液-液两相黏性流体的流动规律[J]. 化工学报, 2013, 64(2): 476-483. |
Lan W J, Li S W, Xu J H, et al. Liquid- liquid two-phase viscous flow in coaxial microfluidic device[J]. CIESC Journal, 2013, 64(2): 476-483. | |
29 | Peng L, Yang M, Guo S S, et al. The effect of interfacial tension on droplet formation in flow-focusing microfluidic device[J]. Biomed Microdevices, 2011, 13(3): 559-564. |
30 | Wu L Y, Liu X D, Zhao Y J, et al. Role of local geometry on droplet formation in axisymmetric microfluidics[J]. Chemical Engineering Science, 2017, 163: 56-67. |
31 | Liu H, Zhang Y. Droplet formation in microfluidic cross-junctions[J]. Physics of Fluids, 2011, 23(8): 082101. |
32 | Tan Y C, Cristini V, Lee A P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 350-356. |
33 | Lashkaripour A, Abouei M A, Rasouli M, et al. Numerical study of droplet generation process in a microfluidic flow focusing[J]. Journal of Computational Applied Mechanics, 2015, 46(2): 167-175. |
34 | Gupta A, Matharoo H S, Makkar D, et al. Droplet formation via squeezing mechanism in a microfluidic flow-focusing device[J]. Computers & Fluids, 2014, 100: 218-226. |
35 | Xiong Q Q, Chen Z, Li S W, et al. Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel[J]. Chemical Engineering Science, 2018, 185: 157-167. |
36 | Mak S Y, Chao Y, Shum H C. The dripping-to-jetting transition in a co-axial flow of aqueous two-phase systems with low interfacial tension[J]. RSC Advances, 2017, 7(6): 3287-3292. |
37 | Chen Y, Wu L, Zhang L. Dynamic behaviors of double emulsion formation in a flow-focusing device[J]. International Journal of Heat and Mass Transfer, 2015, 82: 42-50. |
38 | Li Y, Wu P, Zhang H, et al. The instability of monodisperse bubbles passing through a confined geometry[J]. Applied Physics Letters, 2014, 105(20): 201605. |
39 | Zinchenko A Z, Rother M A, Davis R H. Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm[J]. Journal of Fluid Mechanics, 1999, 391: 249-292. |
40 | Cristini V, Bławzdziewicz J, Loewenberg M. Drop breakup in three-dimensional viscous flows[J]. Physics of Fluids, 1998, 10(8): 1781-1783. |
41 | Castrejón-Pita J, Morrison N, Harlen O, et al. Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode[J]. Physical Review E, 2011, 83(3): 036306. |
42 | Shin S, Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[J]. Journal of Computational Physics, 2002, 180(2): 427-470. |
43 | Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphase analysis[J]. Journal of Computational Physics, 2001, 169(2): 556-593. |
44 | Osher S, Fedkiw R P. Level set methods: an overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2): 463-502. |
45 | Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
46 | Cristini V, Tan Y C. Theory and numerical simulation of droplet dynamics in complex flows—a review[J]. Lab on a Chip, 2004, 4(4): 257-264. |
47 | Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. |
48 | Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 567-603. |
49 | Renardy Y, Renardy M. Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method[J]. Journal of Computational Physics, 2002, 183(2): 400-421. |
50 | Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science [M]. Cambridge: Cambridge University Press, 1999. |
51 | Osher S, Fedkiw R, Piechor K. Level set methods and dynamic implicit surfaces[J]. Appl. Mech. Rev., 2004, 57(3): B15-B15. |
52 | Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337. |
53 | Chakraborty I, Biswas G, Ghoshdastidar P S. Bubble generation in quiescent and co-flowing liquids[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4673-4688. |
54 | Sun D, Tao W. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(4): 645-655. |
55 | Li S, Chen R, Wang H, et al. Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method[J]. Science Bulletin, 2015, 60(22): 1911-1926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||