CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3098-3105.DOI: 10.11949/0438-1157.20200053
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Han ZHANG1(),Qian FU1,2,Qiang LIAO1,2(),Ao XIA1,2,Yun HUANG1,2,Xianqing ZHU1,2,Xun ZHU1,2
Received:
2020-01-14
Revised:
2020-03-19
Online:
2020-07-05
Published:
2020-07-05
Contact:
Qiang LIAO
张晗1(),付乾1,2,廖强1,2(),夏奡1,2,黄云1,2,朱贤青1,2,朱恂1,2
通讯作者:
廖强
作者简介:
张晗(1995—),男,硕士研究生,基金资助:
CLC Number:
Han ZHANG,Qian FU,Qiang LIAO,Ao XIA,Yun HUANG,Xianqing ZHU,Xun ZHU. Study on degradation kinetics of hemicellulose in wheat straw hydrothermal pretreatment[J]. CIESC Journal, 2020, 71(7): 3098-3105.
张晗,付乾,廖强,夏奡,黄云,朱贤青,朱恂. 小麦秸秆水热预处理半纤维素降解动力学研究[J]. 化工学报, 2020, 71(7): 3098-3105.
Add to citation manager EndNote|Ris|BibTeX
温度/℃ | k1/min-1 | k2 /min-1 | k3 /min-1 | k4 /min-1 | k5/min-1 | Ff |
---|---|---|---|---|---|---|
180 | 0.8829 | 0.0056 | 0.0775 | 0.0259 | 0.01525 | 0.7207 |
190 | 1.4368 | 0.0116 | 0.1123 | 0.0571 | 0.02 | 0.7927 |
200 | 1.8948 | 0.0151 | 0.2779 | 0.1963 | 0.0245 | 0.8668 |
210 | 2.2731 | 0.0207 | 0.3858 | 0.3443 | 0.031 | 0.8872 |
220 | 2.7416 | 0.0413 | 0.5124 | 0.505 | 0.0497 | 0.9596 |
Table 1 Kinetic rate constants of hydrothermal pretreatment at different temperatures
温度/℃ | k1/min-1 | k2 /min-1 | k3 /min-1 | k4 /min-1 | k5/min-1 | Ff |
---|---|---|---|---|---|---|
180 | 0.8829 | 0.0056 | 0.0775 | 0.0259 | 0.01525 | 0.7207 |
190 | 1.4368 | 0.0116 | 0.1123 | 0.0571 | 0.02 | 0.7927 |
200 | 1.8948 | 0.0151 | 0.2779 | 0.1963 | 0.0245 | 0.8668 |
210 | 2.2731 | 0.0207 | 0.3858 | 0.3443 | 0.031 | 0.8872 |
220 | 2.7416 | 0.0413 | 0.5124 | 0.505 | 0.0497 | 0.9596 |
速率常数 | 指前因子 | 活化能/(kJ·mol-1) | R2 |
---|---|---|---|
k1 | 13.49 | 50.86 | 0.946 |
k2 | 17.44 | 84.95 | 0.956 |
k3 | 22.23 | 93.33 | 0.949 |
k4 | 34.73 | 144.21 | 0.959 |
k5 | 9.54 | 51.83 | 0.953 |
Table 2 Frequency factors and activation energy
速率常数 | 指前因子 | 活化能/(kJ·mol-1) | R2 |
---|---|---|---|
k1 | 13.49 | 50.86 | 0.946 |
k2 | 17.44 | 84.95 | 0.956 |
k3 | 22.23 | 93.33 | 0.949 |
k4 | 34.73 | 144.21 | 0.959 |
k5 | 9.54 | 51.83 | 0.953 |
1 | Chen H, Fu Q, Liao Q, et al. Rheological properties of microalgae slurry for application in hydrothermal pretreatment systems[J]. Bioresource Technology, 2018, 249: 599-604. |
2 | IEA. Renewable information 2016: overview[R]. International Energy Agency, 2016. |
3 | Deng Z C, Xia A, Liao Q, et al. Laccase pretreatment of wheat straw: effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis[J]. Biotechnology for Biofuels, 2019, 12(1): 159. |
4 | Li J, Feng P, Xiu H, et al. Morphological changes of lignin during separation of wheat straw components by the hydrothermal-ethanol method[J]. Bioresource Technology, 2019, 294: 122-157. |
5 | Shen Z, Zhang K, Si M, et al. Synergy of lignocelluloses pretreatment by sodium carbonate and bacterium to enhance enzymatic hydrolysis of rice straw[J]. Bioresource Technology, 2018, 249: 154-160. |
6 | Hendriks A, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18. |
7 | Tian S Q, Zhao R Y, Chen Z C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 483-489. |
8 | Ashraf M T, Schmidt J E. Process simulation and economic assessment of hydrothermal pretreatment and enzymatic hydrolysis of multi-feedstock lignocellulose—separate vs combined processing[J]. Bioresource Technology, 2018, 249: 835-843. |
9 | Syaftika N, Matsumura Y. Comparative study of hydrothermal pretreatment for rice straw and its corresponding mixture of cellulose, xylan, and lignin[J]. Bioresource Technology, 2018, 255: 1-6. |
10 | Veluchamy C, Kalamdhad A S. Enhancement of hydrolysis of lignocellulose waste pulp and paper mill sludge through different heating processes on thermal pretreatment[J]. Journal of Cleaner Production, 2017, 168: 219-226. |
11 | Song X, Wachemo A C, Zhang L, et al. Effect of hydrothermal pretreatment severity on the pretreatment characteristics and anaerobic digestion performance of corn stover[J]. Bioresource Technology, 2019, 289: 121646. |
12 | Merali Z, Ho J D, Collins S R A, et al. Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation[J]. Bioresource Technology, 2013, 131: 226-234. |
13 | 肖领平. 木质生物质水热资源化利用过程机理研究[D]. 北京: 北京林业大学, 2014. |
Xiao L P. Mechanism research on hydrothermal utilization process of lignocellulose biomass[D]. Beijing: Beijing Forestry University, 2014. | |
14 | 李颖.麦秆水热预处理工艺优化及糖液提纯[D].青岛: 青岛科技大学, 2018. |
Li Y. The optimization of hot-water pretreatment and the purification of sugar liquor on wheat straw[D]. Qingdao: Qingdao University of Science & Technology, 2018. | |
15 | Rajput A A, Visvanathan C. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw[J]. Journal of Environmental Management, 2018, 221: 45-52. |
16 | Kootstra A M J, Mosier N S, Scott E L, et al. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions[J]. Biochemical Engineering Journal, 2009, 43(1): 92-97. |
17 | Shi S, Guan W, Kang L, et al. Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 10990-10997. |
18 | Pratto B, de Souza R B A, Sousa R, et al. Enzymatic hydrolysis of pretreated sugarcane straw: kinetic study and semi-mechanistic modeling[J]. Applied Biochemistry and Biotechnology, 2016, 178(7): 1430-1444. |
19 | Saeman J F. Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature[J]. Bioresource Technology, 1997, 59: 129. |
20 | Yoon J, Sim S, Myint A A, et al. Kinetics of the hydrolysis of xylan based on ether bond cleavage in subcritical water[J]. The Journal of Supercritical Fluids, 2018, 135: 145-151. |
21 | Dutta S K, Chakraborty S. Kinetic analysis of two-phase enzymatic hydrolysis of hemicellulose of xylan type[J]. Bioresource Technology, 2015, 198: 642-650. |
22 | Pronyk C, Mazza G. Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(14): 6367-6375. |
23 | Dos Santos Rocha M S R, Pratto B, de Sousa Junior R, et al. A kinetic model for hydrothermal pretreatment of sugarcane straw[J]. Bioresource Technology, 2017, 228: 176-185. |
24 | Kobayashi T, Sakai Y. Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid[J]. Journal of the Agricultural Chemical Society of Japan, 1956, 20(1): 1-7. |
25 | Shi S, Guan W, Kang L, et al. Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 10990-10997. |
26 | Borrega M, Nieminen K, Sixta H. Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures[J]. Bioresource Technology, 2011, 102(22): 10724-10732. |
27 | Conner A H. Kinetic modeling of hardwood prehydrolysis (Part I): Xylan removal by water prehydrolysis[J]. Wood and Fiber Science, 2007, 16(2): 268-277. |
28 | Sluiter A, Hames B, Ruiz R, et al. Determination of sugars, byproducts, and degradation products in liquid fraction process samples[R]. Technical Report NREL/TP-510-42623. Golden: National Renewable Energy Laboratory, 2006. |
29 | Santucci B S, Maziero P, Rabelo S C, et al. Autohydrolysis of hemicelluloses from sugarcane bagasse during hydrothermal pretreatment: a kinetic assessment[J]. BioEnergy Research, 2015, 8(4): 1778-1787. |
30 | Yu Q, Zhuang X, Yuan Z, et al. Pretreatment of sugarcane bagasse with liquid hot water and aqueous ammonia[J]. Bioresource Technology, 2013, 144: 210-215. |
31 | Cara C, Romero I, Oliva J M, et al. Liquid hot water pretreatment of olive tree pruning residues [J]. Applied Biochemistry and Biotechnology, 2007, 137/138/139/140(1/12): 379-394. |
32 | Lu X, Saka S. Hydrolysis of Japanese beech by batch and semi-flow water under subcritical temperatures and pressures [J]. Biomass and Bioenergy, 2010, 34(8): 1089-1097. |
33 | Vallejos M E, Felissia F E, Kruyeniski J, et al. Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment[J]. Industrial Crops and Products, 2015, 67: 1-6. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[3] | FAN Honggang, ZHAO Dandan, GU Jing, WANG Yazhuo, YUAN Haoran, CHEN Yong. Study on the pyrolysis characteristics of binary mixture of biomass three-component [J]. CIESC Journal, 2021, 72(7): 3788-3800. |
[4] | DU Juan, GONG Zhiqiang, HUANG Caoxing, LIANG Chen, YAO Shuangquan, LIU Yang. Resin adsorption - ultrafiltration synergistic separation of alkaline extracted hemicellulose from bagasse [J]. CIESC Journal, 2021, 72(4): 2139-2147. |
[5] | Wanna ZHAO, Chunmei ZHOU, Yuguang JIN, Yanhui YANG. Selective oxidation of 5-hydroxymethylfurfural over α-MnO2 nanowires with tunable surface oxidation state [J]. CIESC Journal, 2021, 72(12): 6274-6281. |
[6] | Wenyan WANG, Guangyi ZHANG, Huibo MENG, Xinyu ZHU, Jianling ZHANG, Guangwen XU. Furfural residue pyrolysis characteristics and the effect of its pyrolysis products on in-situ control of NOx emission from its combustion flue gas [J]. CIESC Journal, 2021, 72(11): 5770-5778. |
[7] | ZHAO Yu, SHI Qi, DONG Jinxiang. Fine adjustment of elliptical windows of ZIFs and performances of adsorptive separation of furfural/5-hydroxymethylfurfural [J]. CIESC Journal, 2021, 72(1): 555-568. |
[8] | Jianqing HU, Kan WANG, Bingjian ZHANG, Qinglin CHEN. Retrofit for lubricating furfural refining process based on phase diagram analysis [J]. CIESC Journal, 2020, 71(1): 237-244. |
[9] | LÜ Huisheng, ZHANG Jia, LI Yonghui, GENG Zhongfeng, WANG Zhi, LÜ Chunliu, SHI Xingfang. Effect of organic acids on subcritical hydrolysis of sweet sorghum bagasse [J]. CIESC Journal, 2018, 69(9): 4058-4065. |
[10] | LÜ Xilei, RUAN Houhang, CHEN Hao, LÜ Xiuyang. Single-step Zr-SBA-15 catalytic conversion of furfural to ethyl levulinate in near-critical ethanol [J]. CIESC Journal, 2018, 69(6): 2488-2495. |
[11] | MAO Ming, LENG Erwei, GONG Xun, XU Minghou. Conversion of cellulose into 5-hydroxymehylfurfural catalyzed by CrCl3-AlCl3 [J]. CIESC Journal, 2018, 69(2): 801-807. |
[12] | SU Ye, BAO Zongbi, ZHANG Zhiguo, XING Huabin, YANG Qiwei, SU Baogen, YANG Yiwen, REN Qilong. Sulfonic acid functionalized MIL-101(Cr) catalysts with tunable Lewis acid and Brönsted acid sites for glucose dehydration to 5-HMF [J]. CIESC Journal, 2016, 67(7): 2799-2807. |
[13] | ZHU Ning, SHI Haiqiang, CAO Nan, XIONG Xuedong, NIU Meihong, PING Qingwei. Isolation of hemicelluloses from acacia wood with hydrothermal prehydrolysis and its characterization of structure and component [J]. CIESC Journal, 2016, 67(6): 2605-2611. |
[14] | XU Shuying, TAN Wei, ZHANG Yucang. Enzyme degumming process of banana pseudostem fibers andcharacterization of degummed fibers [J]. CIESC Journal, 2015, 66(9): 3753-3761. |
[15] | ZHAO Xuhong, SHI Haiqiang, ZHANG Jian, LI Na, NIU Meihong, PING Qingwei. Determination of soluble lignin and furfural in lignocellulosic pre-hydrolysis liquid by UV spectroscopy [J]. CIESC Journal, 2015, 66(6): 2295-2302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||