CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3788-3800.DOI: 10.11949/0438-1157.20201876
• Energy and environmental engineering • Previous Articles Next Articles
FAN Honggang1,2,3(),ZHAO Dandan1,2,5,GU Jing1,2,WANG Yazhuo1,2,YUAN Haoran1,2,4,5(
),CHEN Yong1,2,4,5
Received:
2020-12-20
Revised:
2021-03-25
Online:
2021-07-05
Published:
2021-07-05
Contact:
YUAN Haoran
范洪刚1,2,3(),赵丹丹1,2,5,顾菁1,2,王亚琢1,2,袁浩然1,2,4,5(
),陈勇1,2,4,5
通讯作者:
袁浩然
作者简介:
范洪刚(1993—),男, 博士研究生, 基金资助:
CLC Number:
FAN Honggang, ZHAO Dandan, GU Jing, WANG Yazhuo, YUAN Haoran, CHEN Yong. Study on the pyrolysis characteristics of binary mixture of biomass three-component[J]. CIESC Journal, 2021, 72(7): 3788-3800.
范洪刚, 赵丹丹, 顾菁, 王亚琢, 袁浩然, 陈勇. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800.
样品 | 工业分析/% | 元素分析/% | |||||
---|---|---|---|---|---|---|---|
挥发分 | 灰分 | 固定碳 | C | H | N | O① | |
CE | 91.26 | 0.16 | 8.58 | 42.88 | 6.47 | 0.03 | 50.46 |
XY | 96.62 | 0.27 | 3.11 | 42.55 | 6.53 | 0.05 | 50.60 |
LG | 45.47 | 16.83 | 37.7 | 50.08 | 4.96 | 0.00 | 28.13 |
Table 1 Proximate analysis and ultimate analysis of biomass three-component
样品 | 工业分析/% | 元素分析/% | |||||
---|---|---|---|---|---|---|---|
挥发分 | 灰分 | 固定碳 | C | H | N | O① | |
CE | 91.26 | 0.16 | 8.58 | 42.88 | 6.47 | 0.03 | 50.46 |
XY | 96.62 | 0.27 | 3.11 | 42.55 | 6.53 | 0.05 | 50.60 |
LG | 45.47 | 16.83 | 37.7 | 50.08 | 4.96 | 0.00 | 28.13 |
样品 | Ts/℃ | Tmax/℃ | Te/℃ | Dmax/ (%/min) | 热解残留/% |
---|---|---|---|---|---|
CE | 264.50 | 347.52 | 414.63 | 92.27 | 11.81 |
CELG-31 | 189.07 | 322.76 | 528.59 | 24.16 | 25.38 |
CELG-11 | 186.26 | 321.14 | 529.24 | 17.98 | 32.63 |
CELG-13 | 180.60 | 315.53 | 529.03 | 11.46 | 39.21 |
LG | 221.08 | 321.14 | 541.01 | 9.31 | 51.73 |
LGXY-31 | 172.92 | 192.67 | 533.76 | 29.99 | 40.33 |
LGXY-11 | 164.92 | 185.7 | 531.75 | 91.66 | 31.58 |
LGXY-13 | 174.14 | 197.21 | 531.99 | 179.96 | 25.49 |
XY | 201.55 | 265.03 | 329.68 | 78.23 | 15.82 |
XYCE-31 | 202.06 | 300.09 | 388.13 | 25.89 | 19.29 |
XYCE-11 | 192.21 | 351.93 | 375.41 | 43.66 | 17.14 |
XYCE-13 | 193.94 | 350.81 | 377.25 | 58.13 | 14.18 |
Table 2 Thermal mass loss characteristics of samples
样品 | Ts/℃ | Tmax/℃ | Te/℃ | Dmax/ (%/min) | 热解残留/% |
---|---|---|---|---|---|
CE | 264.50 | 347.52 | 414.63 | 92.27 | 11.81 |
CELG-31 | 189.07 | 322.76 | 528.59 | 24.16 | 25.38 |
CELG-11 | 186.26 | 321.14 | 529.24 | 17.98 | 32.63 |
CELG-13 | 180.60 | 315.53 | 529.03 | 11.46 | 39.21 |
LG | 221.08 | 321.14 | 541.01 | 9.31 | 51.73 |
LGXY-31 | 172.92 | 192.67 | 533.76 | 29.99 | 40.33 |
LGXY-11 | 164.92 | 185.7 | 531.75 | 91.66 | 31.58 |
LGXY-13 | 174.14 | 197.21 | 531.99 | 179.96 | 25.49 |
XY | 201.55 | 265.03 | 329.68 | 78.23 | 15.82 |
XYCE-31 | 202.06 | 300.09 | 388.13 | 25.89 | 19.29 |
XYCE-11 | 192.21 | 351.93 | 375.41 | 43.66 | 17.14 |
XYCE-13 | 193.94 | 350.81 | 377.25 | 58.13 | 14.18 |
Fig.2 The experimental and theoretical TG curves of the binary mixture as well as the difference between the experimental and theoretical values of mass loss
Fig.5 The MS curves of small molecule gas as well as the experimental and theoretical values of peak area during the co-pyrolysis of cellulose and lignin
Fig.6 The MS curves of small molecule gas as well as the experimental and theoretical values of peak area during the co-pyrolysis of lignin and hemicellulose
Fig.7 The MS curves of small molecule gas as well as the experimental and theoretical values of peak area during the co-pyrolysis of hemicellulose and cellulose
1 | Sheldon R A. Green and sustainable manufacture of chemicals from biomass: state of the art[J]. Green Chemistry, 2014, 16(3): 950-963. |
2 | Zhang H Y, Luo M M, Xiao R, et al. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5[J]. Bioresource Technology, 2014, 155: 57-62. |
3 | Taarning E, Osmundsen C M, Yang X B, et al. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy Environmental Science, 2011, 4(3): 793-804. |
4 | Chen X, Li S J, Liu Z H, et al. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO[J]. Bioresource Technology, 2019, 287: 121493. |
5 | Zeng K, Li J, Xie Y P, et al. Molten salt pyrolysis of biomass: the mechanism of volatile reforming and pyrolysis[J]. Energy, 2020, 213: 118801. |
6 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
7 | Pang C H, Gaddipatti S, Tucker G, et al. Relationship between thermal behaviour of lignocellulosic components and properties of biomass[J]. Bioresource Technology, 2014, 172: 312-320. |
8 | Biagini E, Barontini F, Tognotti L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique[J]. Industrial & Engineering Chemistry Research, 2006, 45(13): 4486-4493. |
9 | Yang H P, Yan R, Chen H P, et al. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin[J]. Energy & Fuels, 2006, 20(1): 388-393. |
10 | Yu J, Paterson N, Blamey J, et al. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass[J]. Fuel, 2017, 191: 140-149. |
11 | Hilbers T J, Wang Z H, Pecha B, et al. Cellulose-lignin interactions during slow and fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114: 197-207. |
12 | Hosoya T, Kawamoto H, Saka S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 328-336. |
13 | Couhert C, Commandre J M, Salvador S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?[J]. Fuel, 2009, 88(3): 408-417. |
14 | Zhang J, Choi Y S, Yoo C G, et al. Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(2): 293-301. |
15 | Wu S L, Shen D K, Hu J, et al. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 95: 55-63. |
16 | Chua Y W, Wu H W, Yu Y. Effect of cellulose-lignin interactions on char structural changes during fast pyrolysis at 100—350℃[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3977-3986. |
17 | Giudicianni P, Cardone G, Cellulose Ragucci R., hemicellulose and lignin slow steam pyrolysis: thermal decomposition of biomass components mixtures[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 213-222. |
18 | Wang S R, Lin H Z, Ru B, et al. Kinetic modeling of biomass components pyrolysis using a sequential and coupling method[J]. Fuel, 2016, 185: 763-771. |
19 | Wang S R, Ru B, Lin H Z, et al. Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods[J]. Fuel, 2015, 150: 243-251. |
20 | Yang H Q, Yi N, Zhao S, et al. Characterization of hemicelluloses in sugarcane (Saccharum spp. hybrids) culm during xylogenesis[J]. International Journal of Biological Macromolecules, 2020, 165: 1119-1128. |
21 | Collard F X, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 594-608. |
22 | Chu S, Subrahmanyam A V, Huber G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound[J]. Green Chemistry, 2013, 15(1): 125-136. |
23 | Milosavljevic I, Oja V, Suuberg E M. Thermal effects in cellulose pyrolysis: relationship to char formation processes[J]. Industrial & Engineering Chemistry Research, 1996, 35(3): 653-662. |
24 | Kai X P, Yang T H, Shen S Q, et al. TG-FTIR-MS study of synergistic effects during co-pyrolysis of corn stalk and high-density polyethylene (HDPE)[J]. Energy Conversion and Management, 2019, 181: 202-213. |
25 | Kai X P, Li R D, Yang T H, et al. Study on the co-pyrolysis of rice straw and high density polyethylene blends using TG-FTIR-MS[J]. Energy Conversion and Management, 2017, 146: 20-33. |
26 | Ma Z Q, Chen D Y, Gu J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Conversion and Management, 2015, 89: 251-259. |
27 | Peng X W, Ma X Q, Lin Y S, et al. Co-pyrolysis between microalgae and textile dyeing sludge by TG-FTIR: kinetics and products[J]. Energy Conversion and Management, 2015, 100: 391-402. |
28 | Zeng L T, Hu X C, Gu N N, et al. Investigation of volatile chemicals and their distributions from pyrolysis of chitin by FT-IR and GC-MS[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 357-362. |
29 | Yuan H R, Fan H G, Shan R, et al. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conversion and Management, 2018, 157: 517-526. |
30 | Gu J, Fan H G, Wang Y Z, et al. Co-pyrolysis of xylan and high-density polyethylene: product distribution and synergistic effects[J]. Fuel, 2020, 267: 116896. |
31 | Monteil-Rivera F, Phuong M, Ye M W, et al. Isolation and characterization of herbaceous lignins for applications in biomaterials[J]. Industrial Crops and Products, 2013, 41: 356-364. |
32 | Wang S R, Wang K G, Liu Q, et al. Comparison of the pyrolysis behavior of lignins from different tree species[J]. Biotechnology Advances, 2009, 27(5): 562-567. |
33 | Asmadi M, Kawamoto H, Saka S. Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1): 76-87. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[4] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[7] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[8] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[9] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[10] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[11] | Zhangning CUI, Zixuan HU, Lei WU, Jun ZHOU, Gan YE, Tiantian LIU, Qiuli ZHANG, Yonghui SONG. Research progress on the water resistance of degradable cellulose-based materials [J]. CIESC Journal, 2023, 74(6): 2296-2307. |
[12] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[15] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 606
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 468
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||