CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 77-82.DOI: 10.11949/0438-1157.20200127
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yang LI1(),Shoujin CHANG1,Haitao HU1(),Haoran SUN1,Zhancheng LAI1,Shanmin LIU2
Received:
2020-02-11
Revised:
2020-02-18
Online:
2020-04-25
Published:
2020-04-25
Contact:
Haitao HU
李阳1(),常守金1,胡海涛1(),孙浩然1,赖展程1,刘善敏2
通讯作者:
胡海涛
作者简介:
李阳(1995—),男,硕士研究生,基金资助:
CLC Number:
Yang LI, Shoujin CHANG, Haitao HU, Haoran SUN, Zhancheng LAI, Shanmin LIU. Experimental investigation on performance of temperature control system for aircraft precision instrument[J]. CIESC Journal, 2020, 71(S1): 77-82.
李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
1 | 康开华, 才满瑞. 欧洲过渡性实验飞行器项目[J]. 导弹与航天运载技术, 2012, (4): 58-62. |
Kang K H, Cai M R. European intermediate experimental vehicle project[J]. Missiles and Space Vehicles, 2012, (4): 58-62. | |
2 | 王国栋. 惯性/卫星组合导航系统综述[J]. 科技视界, 2019, (21): 115-117. |
Wang G D. Research progress of inertial / satellite integrated navigation system[J]. Science & Technology Vision, 2019, (21): 115-117. | |
3 | Zhashitov V E D, Pankratov V M. Using the method of elementary balances for analysis and synthesis of thermal control system for FOG SINS based on Peltier modules[J]. Gyroscopy and Navigation, 2014, 5(4): 245-256. |
4 | Mason W, Wedekind D. Prediction and measurement of strapdown inertial measurement unit performance on lunar missions[C]//The AIAA Guidance, Control and Flight Mechanics Conference. 2013, 49(439): 136-139. |
5 | Niu X J, Li Y, Zhang H P, et al. Fast thermal calibration of low-grade inertial sensors and inertial measurement units[J]. Sensors, 2013, 13(9): 12192-12217. |
6 | Dzhashitov V E, Pankratov V M. Control of temperature fields of a strapdown inertial navigation system based on fiber optic gyroscopes[J]. Journal of Computer and Systems Sciences International, 2014, 53(4): 565-575. |
7 | Lefèvre H C. The fiber-optic gyroscope: achievement and perspective[J]. Gyroscopy and Navigation, 2012, 3(4): 223-226. |
8 | 张鹏飞, 龙兴武. 机抖激光陀螺捷联系统中惯性器件的温度补偿的研究[J]. 宇航学报, 2006, 27(3): 522-526. |
Zhang P F, Long X W. Research on temperature compensation model of inertial sensor in mechanically dithered RLG’s SINS[J]. Astronaut, 2006, 27(3): 522-526. | |
9 | 刘元元, 杨功流, 尹洪亮. 基于双模型的光纤陀螺温度补偿方法[J]. 中国惯性技术学报, 2015, 23(1): 131-136. |
Liu Y Y, Yang G L, Yin H L. Temperature compensation for fiber optic gyroscope based on dual models[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 131-136. | |
10 | 刘元元, 杨功流, 李思宜. BP-Bagging模型再光纤陀螺温度补偿中的应用[J]. 中国惯性技术学报, 2014, 22(2): 254-259. |
Liu Y Y, Yang G L, Li S Y. Application of BP-Bagging model in temperature compensation for fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2014, 22(2): 254-259. | |
11 | Jadav K, Panchal M. Optimizing weights of artificial neural networks using genetic algorithms[J]. International Journal of Advanced Research in Computer Science and Electronics Engineering, 2012, 1(10): 47-51. |
12 | 程煜明, 张炎华. 光纤陀螺非线性温度漂移模型的辨识[J]. 上海交通大学学报, 1997, 31(12): 123-125, 129. |
Cheng Y M, Zhang Y H. Novel optimal designation methodology of ship SINS initial alignment[J]. Journal of Shanghai Jiao Tong University, 1997, 31(12): 123-125, 129. | |
13 | 周琪, 秦永元, 赵长山. 光纤陀螺温度漂移误差的模糊补偿方案研究[J]. 传感技术学报, 2010, 23(7): 926-930. |
Zhou Q, Qin Y Y, Zhao C S. Research on fuzzy compensation method of temperature drift for fiber optical gyro[J]. Chinese Journal of Sensors and Actuators, 2010, 23(7): 926-930. | |
14 | 钱峰, 田蔚风, 杨艳娟, 等. 基于受控马氏链的干涉型光纤陀螺温度漂移模型[J]. 光电子·激光, 2003, 14(7): 705-708. |
Qian F, Tian W F, Yang Y J, et al. A model on temperature drift of interference fiber optical gyros based on controlled Markov chain[J]. Journal of Optoelectronics· Laser, 2003, 14(7): 705-708. | |
15 | Becker D, Nielsen J E, Diogo A S, et al. Drift reduction in strapdown airborne gravimetry using a simple thermal correction[J]. Journal of Geodesy, 2015, 89(11): 1133-1144. |
16 | Zhashitov V E D, Pankratov V M. Hierarchical thermal models of FOG-based strapdown inertial navigation system[J]. Gyroscopy and Navigation, 2014, 5(3): 162-173. |
17 | Dranitsyna E V, Egorov D A, Untilov A A, et al. Reducing the effect of temperature variations on FOG output signal[J]. Gyroscopy and Navigation, 2013, 4(2): 92-98. |
18 | Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Wiley, 1998: 24-29. |
19 | Cao J L, Wang M H, Cai S K, et al. Optimized design of the SGA-WZ strapdown airborne gravimeter temperature control system[J]. Sensors, 2015, 15(12): 29984-29996. |
20 | Golikov A V, Pankratov V M. Analysis of temperature fields in angular velocity measurement units on fiber-optic gyros[J]. Gyroscopy and Navigation, 2018, 9(2): 116-123. |
21 | 王怀光, 范红波, 任国全, 等. 基于增量式PID控制的半导体制冷温控系统[J]. 现代制造工程, 2013, (11): 110-113. |
Wang H G, Fan H B, Ren G Q, et al. The semiconductor refrigerator temperature control system based on increasing PID controlling method[J]. Modern Manufacturing Engineering, 2013, (11): 110-113. | |
22 | 向前. 某型号激光捷联惯组温控温补系统设计[D]. 长沙: 国防科学技术大学, 2010. |
Xiang Q. The temperature control and compensation system for the certain laser gyro strapdown inertial measurement unit[D]. Changsha: National University of Defense Technology, 2010. | |
23 | Zhang R P. Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves[J]. IOP Conference Series Earth and Environmental Science, 2017, 61(1): 012003. |
24 | 韩玉. 航空电子设备用热管研究[D]. 南京: 南京航空航天大学, 2005. |
Han Y. Investigation on application of a flat-plate heat pipe to cooling aeronautical electronics component[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005. | |
25 | 李玉东. 半导体多级制冷性能组合优化设计[D]. 上海: 同济大学, 2007. |
Li Y D. Combined optimal design on performance of multi-stage semiconductor cooling[D]. Shanghai: Tongji University, 2007. | |
26 | 吴雷, 高明, 张涛, 等. 热电制冷的应用与优化综述[J]. 制冷学报, 2019, 40(6): 1-12. |
Wu L, Gao M, Zhang T, et al. Thermoelectric cooling application and optimization: a review[J]. Journal of Refrigeration, 2019, 40(6): 1-12. | |
27 | 李爱博. 单级半导体制冷器制冷特性分析及研究[D]. 武汉: 华中科技大学, 2011. |
Li A B. Analysis and study on cooling performance of single-stage thermoelectric cooling devices[D]. Wuhan: Huazhong University of Science and Technology, 2011. | |
28 | 王芳. 保温材料热导率影响因素试验研究[J]. 上海纺织科技, 2019, 47(6): 36-38. |
Wang F. Influencing factors of thermal conductivity of thermal insulation materials[J]. Shanghai Textile Science & Technology, 2019, 47(6): 36-38. | |
29 | 尹雨晨, 雷辉, 曾一兵, 等. 绝缘高辐射散热涂层配方设计及性能研究[J]. 涂料工业, 2016, 46(7): 7-11. |
Yin Y C, Lei H, Zeng Y B, et al. Formulation design and properties of insulating coating with high radiation and heat dissipation[J]. Paint & Coatings Industry, 2016, 46(7): 7-11. | |
30 | 刘志锴. 钛合金表面含铝复合氧化物涂层制备及其辐射防热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Liu Z K. Preparation and radiation ability of aluminum contained composite oxides coatings on titanium alloys[D]. Harbin: Harbin Institute of Technology, 2018. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[15] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 484
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||