CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2713-2723.DOI: 10.11949/0438-1157.20200229
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Rui HUANG1(),Xiaoming FANG1,2,Ziye LING1,2,Zhengguo ZHANG1,2()
Received:
2020-03-04
Revised:
2020-04-07
Online:
2020-06-05
Published:
2020-06-05
Contact:
Zhengguo ZHANG
通讯作者:
张正国
作者简介:
黄睿(1995—),男,硕士研究生,基金资助:
CLC Number:
Rui HUANG, Xiaoming FANG, Ziye LING, Zhengguo ZHANG. Preparation of high-performance sodium acetate trihydrate-urea-expanded graphite mixed phase change material and its application performance in electric floor heating[J]. CIESC Journal, 2020, 71(6): 2713-2723.
黄睿, 方晓明, 凌子夜, 张正国. 高性能三水醋酸钠-尿素-膨胀石墨混合相变材料的制备及其在电地暖中的应用性能[J]. 化工学报, 2020, 71(6): 2713-2723.
尿素的质量分数/% | 相变温度/℃ | 峰值温度/℃ | 相变潜热/(J/g) |
---|---|---|---|
0(SAT) | 58.70 | 64.10 | 288.4±1.6 |
10 | 32.92 | 36.70/54.11 | 241.2±2.3 |
20 | 32.84 | 36.35/48.17 | 228.5±3.7 |
30 | 32.83 | 35.38 | 228.2±0.8 |
32 | 32.74 | 35.04 | 225.2±1.8 |
35 | 32.53 | 34.79 | 211.7±2.0 |
38 | 32.41 | 34.64 | 218.1±1.1 |
40 | 32.41 | 35.17 | 215.0±1.8 |
42 | 32.61 | 35.17 | 205.9±3.1 |
45 | 32.63 | 35.62 | 193.4±2.4 |
50 | 32.85 | 35.24 | 155.6±4.1 |
100(urea) | 132.74 | 135.01 | 231.1±2.1 |
Table 1 Phase change characteristics of SAT-urea mixtures with different mass fractions of urea
尿素的质量分数/% | 相变温度/℃ | 峰值温度/℃ | 相变潜热/(J/g) |
---|---|---|---|
0(SAT) | 58.70 | 64.10 | 288.4±1.6 |
10 | 32.92 | 36.70/54.11 | 241.2±2.3 |
20 | 32.84 | 36.35/48.17 | 228.5±3.7 |
30 | 32.83 | 35.38 | 228.2±0.8 |
32 | 32.74 | 35.04 | 225.2±1.8 |
35 | 32.53 | 34.79 | 211.7±2.0 |
38 | 32.41 | 34.64 | 218.1±1.1 |
40 | 32.41 | 35.17 | 215.0±1.8 |
42 | 32.61 | 35.17 | 205.9±3.1 |
45 | 32.63 | 35.62 | 193.4±2.4 |
50 | 32.85 | 35.24 | 155.6±4.1 |
100(urea) | 132.74 | 135.01 | 231.1±2.1 |
EG质量 分数/% | 过冷度/℃ | 热导率/ (W/(m·K)) | 熔点/℃ | 相变潜热/(J/g) |
---|---|---|---|---|
0 | 7.15 | 0.531 | 32.41 | 218.1±1.1 |
2 | 2.89 | 1.355 | 32.40 | 213.2±0.4 |
4 | 2.04 | 2.349 | 31.98 | 209.1±0.6 |
6 | 2.02 | 2.991 | 31.98 | 203.7±1.3 |
8 | 2.10 | 3.346 | 32.11 | 200.0±1.5 |
10 | 2.02 | 3.657 | 32.20 | 195.2±1.2 |
Table 2 Thermal characteristics of mixtures with different contents of EG
EG质量 分数/% | 过冷度/℃ | 热导率/ (W/(m·K)) | 熔点/℃ | 相变潜热/(J/g) |
---|---|---|---|---|
0 | 7.15 | 0.531 | 32.41 | 218.1±1.1 |
2 | 2.89 | 1.355 | 32.40 | 213.2±0.4 |
4 | 2.04 | 2.349 | 31.98 | 209.1±0.6 |
6 | 2.02 | 2.991 | 31.98 | 203.7±1.3 |
8 | 2.10 | 3.346 | 32.11 | 200.0±1.5 |
10 | 2.02 | 3.657 | 32.20 | 195.2±1.2 |
厚度/mm | tH/min | tC/min | Tm/℃ | tL/min | Δt/min | FTC/% | EC/ (W·h) |
---|---|---|---|---|---|---|---|
5 | 107 | 58 | 17.6 | 173 | 222 | 78.93 | 35 |
10 | 200 | 58 | 18.6 | 222 | 364 | 86.26 | 55 |
Table 3 Parameters of test rooms equipped with phase change panels with different PCM thicknesses
厚度/mm | tH/min | tC/min | Tm/℃ | tL/min | Δt/min | FTC/% | EC/ (W·h) |
---|---|---|---|---|---|---|---|
5 | 107 | 58 | 17.6 | 173 | 222 | 78.93 | 35 |
10 | 200 | 58 | 18.6 | 222 | 364 | 86.26 | 55 |
加热 温度/℃ | tH/min | tC/min | Tm/℃ | tL/min | Δt/min | FTC/% | EC/ (W·h) |
---|---|---|---|---|---|---|---|
42 | 200 | 58 | 18.6 | 222 | 364 | 86.26 | 55 |
45 | 139 | 44 | 18.6 | 234 | 331 | 88.20 | 49 |
48 | 119 | 41 | 18.5 | 228 | 306 | 88.18 | 46 |
Table 4 Parameters of test rooms under different set heating temperatures
加热 温度/℃ | tH/min | tC/min | Tm/℃ | tL/min | Δt/min | FTC/% | EC/ (W·h) |
---|---|---|---|---|---|---|---|
42 | 200 | 58 | 18.6 | 222 | 364 | 86.26 | 55 |
45 | 139 | 44 | 18.6 | 234 | 331 | 88.20 | 49 |
48 | 119 | 41 | 18.5 | 228 | 306 | 88.18 | 46 |
Room | ECP/(W·h) | EFP×103/CNY | ECV/(W·h) | EFV×103/CNY | ECT/(W·h) | EFT×103/CNY |
---|---|---|---|---|---|---|
参考房 | 69 | 42.573 | 72 | 22.104 | 141 | 64.677 |
PCM房 | 59 | 36.403 | 65 | 19.955 | 124 | 56.358 |
Table 5 EC and EF of PCM room and reference room
Room | ECP/(W·h) | EFP×103/CNY | ECV/(W·h) | EFV×103/CNY | ECT/(W·h) | EFT×103/CNY |
---|---|---|---|---|---|---|
参考房 | 69 | 42.573 | 72 | 22.104 | 141 | 64.677 |
PCM房 | 59 | 36.403 | 65 | 19.955 | 124 | 56.358 |
相变板 成本/ CNY | 节能经济效益/CNY | |||||
---|---|---|---|---|---|---|
第1年 | 第2年 | 第3年 | 第4年 | 第5年 | … | |
1170.336 | 249.57 | 499.14 | 748.71 | 998.28 | 1247.85 | … |
Table 6 Economic cost and payback of phase change panel
相变板 成本/ CNY | 节能经济效益/CNY | |||||
---|---|---|---|---|---|---|
第1年 | 第2年 | 第3年 | 第4年 | 第5年 | … | |
1170.336 | 249.57 | 499.14 | 748.71 | 998.28 | 1247.85 | … |
1 | Huang X, Zhu C Q, Lin Y X, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: a review[J]. Applied Thermal Engineering, 2019, 147: 841-855. |
2 | Iten M, Liu S, Shukla A. A review on the air-PCM-TES application for free cooling and heating in the buildings[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 175-186. |
3 | Villasmil W, Fischer L J, Worlitschek J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 71-84. |
4 | Oró E, de Gracia A, Castell A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. |
5 | Zhang H, Zhang L, Li Q, et al. Preparation and characterization of methyl palmitate/palygorskite composite phase change material for thermal energy storage in buildings[J]. Construction and Building Materials, 2019, 226: 212-219. |
6 | Marani A, Nehdi M L. Integrating phase change materials in construction materials: critical review[J]. Construction and Building Materials, 2019, 217: 36-49. |
7 | Huang R, Feng J X, Ling Z Y, et al. A sodium acetate trihydrate-formamide/expanded perlite composite with high latent heat and suitable phase change temperatures for use in building roof[J]. Construction and Building Materials, 2019, 226: 859-867. |
8 | Fu L L, Wang Q H, Ye R D, et al. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation[J]. Renewable Energy, 2017, 114: 733-743. |
9 | Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
10 | Zhou D, Zhao C Y, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy, 2012, 92: 593-605. |
11 | Miró L, Gasia J, Cabeza L F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review[J]. Applied Energy, 2016, 179: 284-301. |
12 | Li Q, Li C, Du Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806. |
13 | Wei G, Wang G, Xu C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786. |
14 | Wong-Pinto L S, Milian Y, Ushak S. Progress on use of nanoparticles in salt hydrates as phase change materials[J]. Renewable and Sustainable Energy Reviews, 2020, 122: 109727. |
15 | Kumar N, Hirschey J, LaClair T J, et al. Review of stability and thermal conductivity enhancements for salt hydrates[J]. Journal of Energy Storage, 2019, 24: 100794. |
16 | Xia Y, Zhang X S. Experimental research on a double-layer radiant floor system with phase change material under heating mode[J]. Applied Thermal Engineering, 2016, 96: 600-606. |
17 | Barrio M, Font J, López D O, et al. Floor radiant system with heat storage by a solid-solid phase transition material[J]. Solar Energy Materials and Solar Cells, 1992, 27(2): 127-133. |
18 | Sattari S, Farhanieh B. A parametric study on radiant floor heating system performance[J]. Renewable Energy, 2006, 31(10): 1617-1626. |
19 | Lin K, Zhang Y, Xu X, et al. Experimental study of under-floor electric heating system with shape-stabilized PCM plates[J]. Energy and Buildings, 2005, 37(3): 215-220. |
20 | Li J, Xue P, He H, et al. Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system[J]. Energy and Buildings, 2009, 41(8): 871-880. |
21 | Cheng W, Xie B, Zhang R, et al. Effect of thermal conductivities of shape stabilized PCM on under-floor heating system[J]. Applied Energy, 2015, 144: 10-18. |
22 | Lin K, Zhang Y, Xu X, et al. Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates[J]. Building and Environment, 2004, 39(12): 1427-1434. |
23 | Barzin R, Chen J J J, Young B R, et al. Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system[J]. Applied Energy, 2015, 148: 39-48. |
24 | Devaux P, Farid M M. Benefits of PCM underfloor heating with PCM wallboards for space heating in winter[J]. Applied Energy, 2017, 191: 593-602. |
25 | El Mays A, Ammar R, Hawa M, et al. Using phase change material in under floor heating[J]. Energy Procedia, 2017, 119: 806-811. |
26 | Faraj K, Faraj J, Hachem F, et al. Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates[J]. Applied Thermal Engineering, 2019, 158: 113778. |
27 | Akeiber H, Nejat P, Majid M Z A, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1470-1497. |
28 | Fang Y T, Ding Y F, Tang Y F, et al. Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating[J]. Applied Thermal Engineering, 2019, 150: 1177-1185. |
29 | Yun B Y, Yang S, Cho H M, et al. Design and analysis of phase change material based floor heating system for thermal energy storage[J]. Environmental Research, 2019, 173: 480-488. |
30 | Fu W W, Zou T, Liang X H, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate-urea/expanded graphite for radiant floor heating system[J]. Applied Thermal Engineering, 2018, 138: 618-626. |
[1] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[4] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[5] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[6] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[7] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[8] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[9] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[10] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[11] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
[12] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[13] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[14] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[15] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 415
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 583
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||