CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5599-5609.DOI: 10.11949/0438-1157.20200416
• Separation engineering • Previous Articles Next Articles
QU Donglei(),YANG Ying,QIAN Zhiling,LI Ping(),YU Jianguo
Received:
2020-04-21
Revised:
2020-06-08
Online:
2020-12-05
Published:
2020-12-05
Contact:
LI Ping
通讯作者:
李平
作者简介:
曲冬蕾(1992—),女,博士研究生,基金资助:
CLC Number:
QU Donglei,YANG Ying,QIAN Zhiling,LI Ping,YU Jianguo. Intensification of low-grade methane enrichment in nitrogen mixture by CH4/CO2 displacement[J]. CIESC Journal, 2020, 71(12): 5599-5609.
曲冬蕾,杨颖,钱智玲,李平,于建国. CH4/CO2混合气置换强化含氮低品质甲烷的浓缩[J]. 化工学报, 2020, 71(12): 5599-5609.
Add to citation manager EndNote|Ris|BibTeX
步骤 | 时间/s | 进料流率/(L·min-1) | ||
---|---|---|---|---|
CH4 | N2 | CO2 | ||
充压 | 150 | 0.2 | 0.8 | — |
进料 | 400 | 0.2 | 0.8 | — |
置换 | 1400 | 0.5 | — | 0.5 |
抽真空 | 1300 | — | — | — |
吹扫1 | 3000 | 0.1 | — | — |
吹扫2 | 300 | — | 0.3 | — |
Table 1 Operating parameter of vacuum pressure swing adsorption with CH4/CO2 displacement intensification
步骤 | 时间/s | 进料流率/(L·min-1) | ||
---|---|---|---|---|
CH4 | N2 | CO2 | ||
充压 | 150 | 0.2 | 0.8 | — |
进料 | 400 | 0.2 | 0.8 | — |
置换 | 1400 | 0.5 | — | 0.5 |
抽真空 | 1300 | — | — | — |
吹扫1 | 3000 | 0.1 | — | — |
吹扫2 | 300 | — | 0.3 | — |
mass balance of column |
---|
mass balance of pellet |
mass balance of micropore |
energy balance of gas phase |
energy balance of solid phase |
energy balance of column wall |
momentum balance in the column |
initial conditions |
boundary conditions |
pressurization step |
feed and displacement step |
blowdown step |
Table 2 Mathematical model, boundary conditions, initial conditions for fixed bed experiment
mass balance of column |
---|
mass balance of pellet |
mass balance of micropore |
energy balance of gas phase |
energy balance of solid phase |
energy balance of column wall |
momentum balance in the column |
initial conditions |
boundary conditions |
pressurization step |
feed and displacement step |
blowdown step |
purge step |
---|
adsorption equilibrium isotherms IAST-Sips model |
purge step |
---|
adsorption equilibrium isotherms IAST-Sips model |
Diffusion coefficient | CH4 | N2 | CO2 |
---|---|---|---|
Dax /(m2·s-1) | 1.57×10-5 | 1.57×10-5 | 1.54×10-5 |
Dp /(m2·s-1) | 5.74×10-6 | 5.65×10-6 | 4.05×10-6 |
kf /(m2·s-1) | 3.77×10-2 | 3.77×10-2 | 2.82×10-2 |
Dμ0 /(m2·s-1) | 23.54 | 5.57 | 6.86 |
Ea /(J·mol-1) | 13062 | 7162 | 4280 |
Thermal conductivity | Gas properties | ||
Parameter | Value | Parameter | Value |
hf /(W·m-2·K-1) | 91.13 | μg /(Pa·s) | 1.61×10-5 |
hw /(W·m-2·K-1) | 60 | cp/(J·mol-1·K-1) | 30.44 |
λ /(W·m-2·K-1) | 0.20 | cv/(J·mol-1·K-1) | 22.13 |
U /(W·m-2·K-1) | 180 |
Table 3 Transport parameters and gas phase properties
Diffusion coefficient | CH4 | N2 | CO2 |
---|---|---|---|
Dax /(m2·s-1) | 1.57×10-5 | 1.57×10-5 | 1.54×10-5 |
Dp /(m2·s-1) | 5.74×10-6 | 5.65×10-6 | 4.05×10-6 |
kf /(m2·s-1) | 3.77×10-2 | 3.77×10-2 | 2.82×10-2 |
Dμ0 /(m2·s-1) | 23.54 | 5.57 | 6.86 |
Ea /(J·mol-1) | 13062 | 7162 | 4280 |
Thermal conductivity | Gas properties | ||
Parameter | Value | Parameter | Value |
hf /(W·m-2·K-1) | 91.13 | μg /(Pa·s) | 1.61×10-5 |
hw /(W·m-2·K-1) | 60 | cp/(J·mol-1·K-1) | 30.44 |
λ /(W·m-2·K-1) | 0.20 | cv/(J·mol-1·K-1) | 22.13 |
U /(W·m-2·K-1) | 180 |
Gas | qm,i/(mol·kg-1) | K0,i/kPa-1 | -ΔHi/(kJ·mol-1) | ni |
---|---|---|---|---|
CH4 | 6.466 | 1.10×10-6 | 19.556 | 1.112 |
N2 | 3.834 | 2.02×10-6 | 16.381 | 1.011 |
CO2 | 15.459 | 1.52×10-7 | 23.698 | 1.344 |
Table 4 Fitting parameters of Sips model for adsorption equilibrium isotherms of pure CH4, N2 and CO2 on GAC
Gas | qm,i/(mol·kg-1) | K0,i/kPa-1 | -ΔHi/(kJ·mol-1) | ni |
---|---|---|---|---|
CH4 | 6.466 | 1.10×10-6 | 19.556 | 1.112 |
N2 | 3.834 | 2.02×10-6 | 16.381 | 1.011 |
CO2 | 15.459 | 1.52×10-7 | 23.698 | 1.344 |
1 | 政府间气候变化专门委员会. 气候变化2014: 综合报告[R].日内瓦, 2013. |
Intergovernmental Panel on Climate Change. Synthesis Report: Climate Change 2014[R]. Geneva, 2013. | |
2 | Effendy S, Xu C, Farooq S. Optimization of a pressure swing adsorption process for nitrogen rejection from natural gas[J]. Industrial & Engineering Chemistry Research, 2017, 56: 5417-5431. |
3 | Yousef A M, El-Maghlany W M, Eldrainy Y A, et al. Upgrading biogas to biomethane and liquid CO2: a novel cryogenic process[J]. Fuel, 2019, 251: 611-628. |
4 | 高婷, 林文胜, 顾安忠, 等. 利用吸附余压预冷的煤层气氮膨胀液化流程[J]. 天然气工业, 2009, 29(2): 117-147. |
Gao T, Lin W S, Gu A Z, et al. Integrated process of nitrogen expansion and liquefaction for precooling CBM by adsorbing residue pressure[J]. Natural Gas Industry, 2009, 29(2): 117-147. | |
5 | 李雯, 王志, 李潘源, 等. 用于甲烷-氮气体系分离的膜技术研究进展[J]. 化工学报, 2016, 67(2): 404-415. |
Li W, Wang Z, Li P Y, et al. Progress in membrane technology for CH4-N2 separation[J]. CIESC Journal, 2016, 67(2): 404-415. | |
6 | Wu T, Diaz M C, Zheng Y, et al. Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes[J]. Journal of Membrane Science, 2015, 473: 201-209. |
7 | Zong Z, Carreon M A. Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation[J]. Journal of Membrane Science, 2017, 524: 117-123. |
8 | Wang S, Guo Q, Liang S, et al. Preparation of Ni-MOF-74/SBS mixed matrix membranes and its application of CH4/N2 separation[J]. Separation and Purification Technology, 2018, 199: 206-213. |
9 | Zhang Y Y , Xie Y J, Zhu Y, et al. Energy consumption analysis for CO2 separation from gas mixtures with liquid absorbents[J]. Energy Procedia, 2014, 61: 2695-2698. |
10 | Matsui H, Jia J, Tsuji T, et al. Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide-nitrogen mixtures[J]. Fuel, 2020, 263: 116640. |
11 | Yang X, Li Z, Zhang C Z , et al. Practical separation performance evaluation of coal mine methane upgrading with carbon molecular sieves[J]. Chemical Engineering Journal, 2019, 367: 295-303. |
12 | Yang H W , Yin C B, Jiang B, et al. Optimization and analysis of a VPSA process for N2/CH4 separation[J]. Separation and Purification Technology, 2014, 134: 232-240. |
13 | Yin C, Sun W, Yang H W, et al. Optimization of three-bed VPSA system for biogas upgrading[J]. Chemical Engineering Science, 2015, 135: 100-108. |
14 | 刘海庆, 吴一江, 杨颖, 等. 沸石ZSM-5吸附回收低浓度煤层气中CH4[J]. 化工学报, 2016, 67(5): 1931-1941. |
Liu H Q, Wu Y J, Yang Y, et al. Adsorption and recovery of low concentration coal-bed methane by zeolite ZSM-5[J]. CIESC Journal, 2016, 67(5): 1931-1941. | |
15 | Gu M, Zhang B, Qi Z D , et al. Effects of pore structure of granular activated carbons on CH4 enrichment from CH4/N2 by vacuum pressure swing adsorption[J]. Separation and Purification Technology, 2015, 146: 213-218. |
16 | Guo Y, Hu J L, Liu X W, et al. Scalable solvent-free preparation of [Ni3(HCOO)6] frameworks for highly efficient separation of CH4 from N2[J]. Chemical Engineering Journal, 2017, 327: 564-572. |
17 | Tang R L, Dai Q B, Liang W W, et al. Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from low-rank natural gas[J]. Chemical Engineering Journal, 2020, 384: 123388. |
18 | Xiao G, Saleman T L, Zou Y, et al. Nitrogen rejection from methane using dual-reflux pressure swing adsorption with a kinetically-selective adsorbent[J]. Chemical Engineering Journal, 2019, 372: 1038-1046. |
19 | 杨颖, 曲冬蕾, 李平, 等. 低浓度煤层气吸附浓缩技术研究与发展[J]. 化工学报, 2018, 69(11): 4518-4529. |
Yang Y, Qu D L, Li P, et al. Research and development on enrichment of low concentration coal mine methane by adsorption technology[J]. CIESC Journal, 2018, 69(11): 4518-4529. | |
20 | Yang J F, Bai H H, Shang H, et al. Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets[J]. Chemical Engineering Journal, 2020, 388: 124222. |
21 | Saleman T L, Li G, Ruffor T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption[J]. Chemical Engineering Journal, 2015, 281: 739-748. |
22 | 韩治洋, 丁兆阳, 韩旸湲, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2): 750-758. |
Han Z Y, Ding Z Y, Han Y Y, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2): 750-758. | |
23 | Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501. |
24 | Han Z Y, Xing R, Zhang D H, et al. Vacuum pressure swing adsorption system for N2/CH4 separation under uncertainty[J]. Chemical Engineering Research and Design, 2019, 142: 245-256. |
25 | Yang X, Liu Y S, Li Z Y, et al. Vacuum exhaust process in pilot-scale vacuum pressure swing adsorption for coal mine ventilation air methane enrichment[J]. Energies, 2018, 11: 1030. |
26 | Liu C M, Zhou Y P, Sun Y, et al. Enrichment of coal-bed methane by PSA complemented with CO2 displacement[J]. AIChE J., 2011, 57(3): 645-654. |
27 | Yang Y, Wu Y J, Liu H Q, et al. Enrichment of ventilation air methane by adsorption with displacement chromatography technology: experiment and numerical simulation[J]. Chemical Engineering Science, 2016, 149: 215-228. |
28 | Qu D L, Yang Y, Qian Z L, et al. Enrichment of low-grade methane gas from nitrogen mixture by VPSA with CO2 displacement process: modeling and experiment[J]. Chemical Engineering Journal, 2020, 380: 122509. |
29 | Qu D L, Yang Y, Lu K, et al. Microstructure effect of carbon materials on the low-concentration methane adsorption separation from its mixture with nitrogen[J]. Adsorption, 2018, 24(4): 357-369. |
30 | Farooq S, Ruthven D M, Boniface H A. Numerical simulation of a pressure swing adsorption oxygen unit[J]. Chemical Engineering Science, 1989, 44(12): 2809-2816. |
31 | Glueckauf E, Coates J I. Theory of chromatography(Ⅳ): The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation[J]. Journal of the Chemical Society (Resumed), 1947: 1315-1321. |
32 | Sips R. On the Structure of a catalyst surface [J]. Journal of Chemiacal Physics, 1948, 16: 490-495. |
33 | Edwards M F, Richardson J F. Gas dispersion in packed beds[J]. Chemical Engineering Science, 1968, 23(2): 109-123. |
34 | Do D D. Adsorption Analysis: Equilibria and Kinetics [M]. London: Imperial College Press, 1998. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[6] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[9] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[12] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[13] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||