CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5461-5469.DOI: 10.11949/0438-1157.20200465
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
ZHAO Jiateng(),WANG Zengpeng,DAI Yucheng,LIU Changhui,RAO Zhonghao()
Received:
2020-05-05
Revised:
2020-09-18
Online:
2020-12-05
Published:
2020-12-05
Contact:
RAO Zhonghao
通讯作者:
饶中浩
作者简介:
赵佳腾(1990—),男,博士,讲师,基金资助:
CLC Number:
ZHAO Jiateng,WANG Zengpeng,DAI Yucheng,LIU Changhui,RAO Zhonghao. Research on heat transfer performance of amphiphilic nanofluid solar gravity heat pipe[J]. CIESC Journal, 2020, 71(12): 5461-5469.
赵佳腾,王增鹏,戴宇成,刘昌会,饶中浩. 两亲性纳米流体太阳能重力热管传热性能研究[J]. 化工学报, 2020, 71(12): 5461-5469.
Add to citation manager EndNote|Ris|BibTeX
1 | Ghaderian J, Sidik N A C, Kasaeian A, et al. Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations[J]. Applied Thermal Engineering, 2017, 121: 520-536. |
2 | 田富中, 辛公明, 亓海青, 等. 交叉齿内螺纹重力热管强化传热特性[J]. 工程热物理学报, 2014, 35(5): 927-930. |
Tian F Z, Xin G M, Qi H Q, et al. Heat transfer characteristic of cross internal helical microfin[J]. Journal of Engineering Thermophysics, 2014, 35(5): 927-930. | |
3 | 马奕新, 金宇, 张虎, 等. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601. |
Ma Y X, Jin Y, Zhang H, et al. Experimental study on heat transfer performance of finned gravity heat pipe[J]. CIESC Journal, 2020, 71(2): 594-601. | |
4 | 何曙, 夏再忠, 王如竹. 一种新型重力热管传热性能研究[J]. 工程热物理学报, 2009, 30(5): 834-836. |
He S, Xia Z Z, Wang R Z. Heat transfer characteristic of an innovative gravity heat pipe[J]. Journal of Engineering Thermophysics, 2009, 30(5): 834-836. | |
5 | Masoud R, Kayvan A, Simin J. Thermal characterisitics of a resurfaced condenser and evaporator closed two-phase thermosyphon[J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 703-710. |
6 | 李庭樑, 岑继文, 黄文博, 等. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. |
Li T L, Cen J W, Huang W B, et al. Experimental study on heat transfer performance of super long gravity heat pipe[J]. CIESC Journal, 2020, 71(3): 997-1008. | |
7 | 杨雪飞. 改性纳米流体的相变换热特性及其在重力热管中的应用[D]. 上海: 上海交通大学, 2011. |
Yang X F. Investigation of phase-changing heat transfer characteristics of functionalized nanofluid and its application in gravity-assisted heat pipes[D]. Shanghai: Shanghai Jiao Tong University, 2011. | |
8 | Asirvatham L G, Wongwises S, Babu J. Heat transfer performance of a glass thermosyphon using graphene-acetone nanofluid[J]. Journal of Heat Transfer, 2015, 137: 111502. |
9 | Zhao S, Xu G, Wang N, et al. Experimental study on the thermal start-up performance of the graphene/water nanofluid-enhanced solar gravity heat pipe[J]. Nanomaterials, 2018, 8: 72. |
10 | Moraveji M, Razvarz S. Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance[J]. International Communications in Heat and Mass Transfer, 2012, 39: 1444-1448. |
11 | Ghanbarpour M, Khodabandeh R, Vafai K. An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid[J]. Heat and Mass Transfer, 2016, 53: 973-983. |
12 | Kiseev V, Sazhin O. Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid[J]. International Journal of Heat and Mass Transfer, 2019, 132: 557-564. |
13 | Nazari M A, Ghasempour R, Ahmadi M H, et al. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2018, 91: 90-94. |
14 | Mehrali M, Sadeghinezhad E, Azizian R, et al. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe[J]. Energy Conversion and Management, 2016, 118: 459-473. |
15 | Parametthanuwat T, Rittidech S, Pattiya A. A correlation to predict heat-transfer rates of a two-phase closed thermosyphon (TPCT) using silver nanofluid at normal operating conditions[J]. International Journal of Heat and Mass Transfer, 2010, 53: 4960-4965. |
16 | 周根明, 周少华, 赵忠超, 等. 纳米流体重力热管启动性能的试验研究[J]. 江苏大学学报(自然科学版), 2013, 27(4): 376-380. |
Zhou G M, Zhou S H, Zhao Z C, et al. Experimental study of the start-up process of gravity heat pipes filled with nanofluids[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(4): 376-380. | |
17 | Gürü M, Sözen A, Karakaya U, et al. Influences of bentonite-deionized water nanofluid utilization at different concentrations on heat pipe performance: an experimental study[J]. Applied Thermal Engineering, 2019, 148: 632-640. |
18 | Menlik T, Sozen A, Gürü M, et al. Heat transfer enhancement using MgO/water nanofluid in heat pipe[J]. Journal of the Energy Institute, 2015, 88: 247-257. |
19 | Sözen A, Gürü M, Khanlari A, et al. Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid[J]. Applied Thermal Engineering, 2019, 160: 114001. |
20 | Eidan A A, Al Sahlani A, Ahmed A Q, et al. Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids[J]. Solar Energy, 2018, 173: 780-788. |
21 | Liu Z H, Hu R L, Lu L, et al. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector[J]. Energy Conversion and Management, 2013, 73: 135-143. |
22 | Moradgholi M, Nowee S M, Farzaneh A. Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic-thermal system[J]. Solar Energy, 2018, 164: 243-250. |
23 | Dehaj M S, Mohiabadi M Z. Experimental study of water-based CuO nanofluid flow in heat pipe solar collector[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137: 2061-2072. |
24 | Ozsoy A, Corumlu V. Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications[J]. Renewable Energy, 2018, 122: 26-34. |
25 | Ramezanizadeh M, Alhuyi N M, Ahmadi M H, et al. Application of nanofluids in thermosyphons: a review[J]. Journal of Molecular Liquids, 2018, 272: 395-402. |
26 | Nazari M A, Ahmadi M H, Sadeghzadeh M, et al. A review on application of nanofluid in various types of heat pipes[J]. Journal of Central South University, 2019, 26: 1021-1041. |
27 | Liu Z H, Li Y Y. A new frontier of nanofluid research—application of nanofluids in heat pipes[J]. International Journal of Heat and Mass Transfer, 2012, 55: 6786-6797. |
28 | Tharayil T, Asirvatham L G, Daub M J, et al. Entropy generation analysis of a miniature loop heat pipe with grapheme-water nanofluid—thermodynamics model and experimental study[J]. International Journal of Heat and Mass Transfer, 2017, 106: 407-421. |
29 | Soleymaniha M, Amiri A, Shanbedi M, et al. Water-based graphene quantum dots dispersion as a high-performance long-term stable nanofluid for two-phased closed thermosyphons[J]. International Communications in Heat and Mass Transfer, 2018, 95: 147-154. |
30 | Azizi M, Hosseini M, Zafarnak S, et al. Experimental analysis of thermal performance in a two-phase closed thermosiphon using graphene/water nanofluid[J]. Industrial & Engineering Chemistry Research, 2013, 52: 10015-10021. |
31 | Liu C H, Fang H, Liu X J, et al. Novel silica filled deep eutectic solvent based nanofluids for energy transportation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 20159-20169. |
32 | Liu C H, Fang H, Qiao Y, et al. Properties and heat transfer mechanistic study of glycerol/choline chloride deep eutectic solvents based nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 138: 690-698. |
33 | Bakthavatchalam B, Habib K, Saidur R, et al. Influence of solvents on the enhancement of thermophysical properties and stability of multi-walled carbon nanotubes nanofluid[J]. Nanotechnology, 2020, 31: 235402. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[4] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[7] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[8] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[9] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[10] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[11] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[12] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[13] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[14] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[15] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||