1 |
陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439.
|
|
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4): 427-439.
|
2 |
Ehrfeld W, Hessel V, Lowe H. Microreactors. New Technology for Modern Chemistry[M]. Weinhem: Wiley-Vch Verlag GmbH, 2000:61-65.
|
3 |
Jahnisch K, Hessel V, Lowe H, et al. Chemistry in microstructured reactors[J]. Angew. Chem. Int. Edit., 2004, 43(4): 406-446.
|
4 |
Zhao Y C, Yao C Q, Chen G W, et al. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor[J]. Green Chem., 2013, 15(2): 446-452.
|
5 |
刘宏臣, 周峰, 尧超群, 等. 微反应器内CO2解吸过程流动行为及气提强化 [J]. 化工学报, 2019, 70(7): 2448-2455.
|
|
Liu H C, Zhou F, Yao C Q, et al. Flow behavior and stripping enhancement of CO2 desorption process in microreactor[J]. CIESC Journal, 2019, 70(7): 2448-2455.
|
6 |
Hessel V, Cortese B, Croon M. Novel process windows—concept, proposition and evaluation methodology, and intensified superheated processing[J]. Chem. Eng. Sci., 2011, 66(7): 1426-1448.
|
7 |
Zhu C Y, Li C F, Gao X Q, et al. Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel[J]. Int. J. Heat Mass Transfer, 2014, 73: 492-499.
|
8 |
Kashid M N, Renken A, Kiwi-minsker L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J]. Chem. Eng. Sci., 2011, 66(17): 3876-3897.
|
9 |
Kashid M N, Kiwi-Minsker L. Microstructured reactors for multiphase reactions: state of the art[J]. Ind. Eng. Chem. Res., 2009, 48(14): 6465-6485.
|
10 |
Wen Z H, Yang M, Zhao S N, et al. Kinetics study of heterogeneous continuous-flow nitration of trifluoromethoxybenzene[J]. React. Chem. Eng., 2018, 3(3): 379-387.
|
11 |
Su Y H, Zhao Y C, Chen G W, et al. Liquid-liquid two-phase flow and mass transfer characteristics in packed microchannels[J]. Chem. Eng. Sci., 2010, 65(13): 3947-3956.
|
12 |
Zhang X N, Stefanick S, Villani F J. Application of microreactor technology in process development[J]. Org. Process. Res. Dev., 2004, 8(3): 455-460.
|
13 |
Burns J R, Ramshaw C. A microreactor for the nitration of benzene and toluene[J]. Chem. Eng. Commun., 2002, 189(12): 1611-1628.
|
14 |
Wang S S, Huang X Y, Yang C. Mixing enhancement for high viscous fluids in a microfluidic chamber[J]. Lab. Chip., 2011, 11(12): 2081-2087.
|
15 |
董正亚, 陈光文, 赵帅南, 等. 声化学微反应器——超声和微反应器协同强化[J]. 化工学报, 2018, 69(1): 102-115.
|
|
Dong Z Y, Chen G W, Zhao S N, et al. Sonochemical microreactor —synergistic intensification of ultrasound and microreactor[J]. CIESC Journal, 2018, 69(1): 102-115.
|
16 |
Xu C, Wang J. Passive microextractor with internal fluid recirculation for two immiscible liquids[J]. Int. J. Chem. React. Eng., 2014, 12(1): 285-293.
|
17 |
van Gerven T, Stankiewicz A. Structure, energy, synergy, time-the fundamentals of process intensification[J]. Ind. Eng. Chem. Res., 2009, 48(5): 2465-2474.
|
18 |
Hessel V, Lowe H, Schonfeld F. Micromixers—a review on passive and active mixing principles[J]. Chem. Eng. Sci., 2005, 60(8/9): 2479-2501.
|
19 |
Cintas P. Ultrasound and green chemistry—further comments[J]. Ultrason. Sonochem., 2016, 28: 257-258.
|
20 |
Rivas D F, Kuhn S. Synergy of microfluidics and ultrasound process intensification challenges and opportunities[J]. Top. Curr. Chem., 2016, 374(5): 1-30.
|
21 |
Fernandez R D, Cintas P, Gardeniers H J G E. Merging microfluidics and sonochemistry: towards greener and more efficient micro-sono-reactors[J]. Chem. Commun., 2012, 48(89): 10935-10947.
|
22 |
Dong Z Y, Zhao S N, Zhang Y C, et al. Mixing and residence time distribution in ultrasonic microreactors[J]. AlChE J., 2017, 63(4): 1404-1418.
|
23 |
Xie Y L, Chindam C, Nama N, et al. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device[J]. Sci. Rep., 2015, 5: 12572.
|
24 |
John J J, Kuhn S, Braeken L, et al. Ultrasound assisted liquid-liquid extraction in microchannels—a direct contact method[J]. Chem. Eng. Process., 2016, 102: 37-46.
|
25 |
Zhao S N, Dong Z Y, Yao C Q, et al. Liquid-liquid two-phase flow in ultrasonic microreactors: cavitation, emulsification, and mass transfer enhancement[J]. AlChE J., 2018, 64(4): 1412-1423.
|
26 |
Zhao S N, Yao C Q, Zhang Q, et al. Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: The effects of channel dimension, solvent properties and temperature[J]. Chem. Eng. J., 2019, 374: 68-78.
|
27 |
Eller A I, Crum L A. Instability of motion of a pulsating bubble in a sound field[J]. J. Acoust. Soc. Am., 1970, 47(3): 762-767.
|
28 |
Gaikwad S G, Pandit A B. Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size[J]. Ultrason. Sonochem., 2008, 15(4): 554-563.
|
29 |
Leighton T G. What is ultrasound?[J]. Prog. Biophys. Mol. Biol., 2007, 93(3): 3-83.
|
30 |
Gogate P R, Shirgaonkar I Z, Sivakumar M, et al. Cavitation reactors: efficiency assessment using a model reaction[J]. AlChE J., 2001, 47(11): 2526-2538.
|
31 |
Huebner S, Kressirer S, Kralisch D, et al. Ultrasound and microstructures—a promising combination?[J]. ChemSusChem., 2012, 5(2): 279-288.
|
32 |
Fu T T, Ma Y G, Funfschilling D, et al. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chem. Eng. Sci., 2010, 65(12): 3739-3748.
|
33 |
Dietrich N, Poncin S, Midoux N, et al. Bubble formation dynamics in various flow-focusing microdevices[J]. Langmuir, 2008, 24(24): 13904-13911.
|
34 |
Zhao S N, Yao C Q, Dong Z Y, et al. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor[J]. Chem. Eng. Sci., 2018, 186: 122-134.
|
35 |
Yao C Q, Zhao Y C, Chen G W. Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications[J]. Chem. Eng. Sci., 2018, 189: 340-359.
|
36 |
Minnaert M. On musical air-bubbles and the sounds of running water[J]. London Edinburgh Dublin Philos. Mag. J. Sci., 1933, 16: 235-248.
|