CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4152-4160.DOI: 10.11949/0438-1157.20200571

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Process intensification of high viscosity extraction system in microreactor via ultrasound-driven microbubbles

Shuainan ZHAO1,2(),Chaoqun YAO1,Zhikai LIU1,Qiang ZHANG1,Guangwen CHEN1(),Quan YUAN1   

  1. 1.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    2.School of Chemical Engineering, Northwest University, Xi’an 710069, Shaanxi, China
  • Received:2020-05-11 Revised:2020-06-24 Online:2020-09-05 Published:2020-09-05
  • Contact: Guangwen CHEN

声驱动微气泡强化微反应器内高黏体系萃取过程

赵帅南1,2(),尧超群1,刘志凯1,张强1,陈光文1(),袁权1   

  1. 1.中国科学院大连化学物理研究所,辽宁 大连 116023
    2.西北大学化工学院,陕西 西安 710069
  • 通讯作者: 陈光文
  • 作者简介:赵帅南(1989—),男,博士研究生,讲师,zhaoshuainan@nwu.edu.cn
  • 基金资助:
    国家自然科学基金项目(91634204)

Abstract:

Aiming at the problem of weak mass transfer ability in high-viscosity-liquid systems, this paper carried out a study to introduce an inert gas into the ultrasonic microreactor to enhance the mass transfer process of the high-viscosity-liquid extraction system. Extraction of vanillin from aqueous solution to toluene was employed as a model to investigate the oscillation behavior of gas bubbles with varying shape and size as well as elucidate the enhancement mechanism of ultrasound-driven slug and microbubble on mass transfer process, respectively. The results can provide theoretical basis for the utilization of introducing gas on accelerating mass transfer between high viscous liquids. Finally, on the basis of the dimensionless Reynolds number of immiscible liquid and gas phase, and ultrasound input power, an empirical model was put forward to correlate the overall mass transfer coefficients, which shows good agreement with the measured values.

Key words: microreactor, ultrasound, acoustic cavitation, high viscous liquid, extraction, bubble

摘要:

针对高黏液-液体系中所存在的传质能力弱等问题,开展了在超声微反应器内导入惰性气体以强化高黏液-液萃取体系传质过程的研究。以甲苯萃取水相中香草醛过程为模型体系,研究了超声激发作用下,不同形状、尺寸气泡的振动行为,揭示了声驱动气弹与声驱动微气泡对该体系传质强化机制,为导入气体辅助超声强化高黏液体间的传质过程提供了理论基础。基于液相Reynolds数、气相Reynolds数和声能密度等参数,提出了预测超声微反应器内液-液总体积传质系数的经验关联式,预测值与实验值吻合良好。

关键词: 微反应器, 超声, 声空化, 高黏液体, 萃取, 气泡

CLC Number: