CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4141-4151.DOI: 10.11949/0438-1157.20200498
• Reviews and monographs • Previous Articles Next Articles
Yingying SUN1,2(),Minghui ZHOU1,2,Jia HUANG1,2,Hang JIANG1,2,Jiru YANG1,2,Cheng FAN3()
Received:
2020-05-06
Revised:
2020-07-15
Online:
2020-09-05
Published:
2020-09-05
Contact:
Cheng FAN
孙盈盈1,2(),周明辉1,2,黄佳1,2,江航1,2,杨济如1,2,樊铖3()
通讯作者:
樊铖
作者简介:
孙盈盈(1986—),女,博士,工程师,基金资助:
CLC Number:
Yingying SUN, Minghui ZHOU, Jia HUANG, Hang JIANG, Jiru YANG, Cheng FAN. Research progress and development tendency of heavy oil in-situ upgrading technologies[J]. CIESC Journal, 2020, 71(9): 4141-4151.
孙盈盈, 周明辉, 黄佳, 江航, 杨济如, 樊铖. 稠油地下改质开采技术及发展趋势[J]. 化工学报, 2020, 71(9): 4141-4151.
Add to citation manager EndNote|Ris|BibTeX
1 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (1): High temperature hydrolysis and thermolysis of therahydro-thiophene in relation to steam stimulation processes[J]. Fuels, 1983, 62(5): 959-962. |
2 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (2): Influence of pH on the high temperature hydrolysis of tetraothiophene and thiophene[J]. Fuels, 1984, 63(1): 125-128. |
3 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (3): Reaction of thiophene and tetrahydro-thiophene with vanadyl and nickel salts[J]. Fuels, 1984, 63(6): 1649-1645. |
4 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (4): The high-temperature reaction of thiophene and tetrahydro-thiophene with aqueous solution of aluminium and first row transition-metal cations[J]. Fuels, 1987, 66(5): 1353-1357. |
5 | Clark P D, Hyne J B, Tyre J D. Chemistry of organosulfur compound type occurring in heavy oil sands (5): Reaction of thiophene and tetrahydro-thiophene with aqueous group VIII B metal species at high temperature[J]. Fuels, 1987, 66(5): 1699-1702. |
6 | Clark P D, Hyne J B. Studies on the chemical reactions of heavy oils under steam stimulation[J]. AOSTRA Journal of Research, 1990, 6(1): 53-64. |
7 | Rivas O R, Camposr E, Borges L G. Experimental evaluation of transition metals salt solutions as additives in steam recovery processes[C]. SPE18076, 1988. |
8 | Clark P D, Kirk M J. Studies on the upgrading of bituminous oils with water and transition metal catalysts[J]. Energy & Fuels, 1994, 8(2): 380-387. |
9 | Duttar P, McCaffrey W C, Gray M R. Thermal cracking of Athabasca bitumen: influence of steam on reaction chemistry[J]. Energy & Fuels, 2000, 14(2): 671-676. |
10 | Chen H H, Montgomery D S, Strausz O P. Hydrocracking of athabasca bitumen using oil-soluble organometallic catalysts (I): The influence of temperature and pressure on catalyst activity[J]. AOSTRA Journal of Research, 1988, (4): 45-47. |
11 | 毛金成, 王海彬, 李勇明, 等. 稠油开发水热裂解催化剂研究进展[J]. 特种油气藏, 2016, 23(3): 1-5. |
Mao J C, Wang H B, Li Y M, et al. Aquathermolysis catalyst advances in heavy oil production[J]. Special Oil & Gas Reservoirs, 2016, 23(3): 1-5. | |
12 | 雷斌, 黄娟, 候钰, 等. 胜利稠油催化改质降黏的机理[J]. 石油化工, 2016, 45(10): 1209-1214. |
Lei B, Huang J, Hou Y, et al. Mechanism of aboveground upgrading and viscosity reduction for Shengli heavy oil by catalysis [J]. Petrochemical Technology, 2016, 45(10): 1209-1214. | |
13 | 李晨. 稠油中含硫化合物的催化裂解机理以及含氧化合物对黏度影响机制研究[D]. 武汉: 中国地质大学, 2019. |
Li C. Research on catalytic dissociation mechanism of S-containing compounds in heavy oil and viscosity evolution of heavy oil upon O-containing compounds[D]. Wuhan: China University of Geosciences, 2007. | |
14 | 张洁, 李小龙, 陈刚, 等. 水溶性配合物催化的稠油低温热裂解研究[J]. 燃料化学学报, 2014, 42(4): 443-448. |
Zhang J, Li X L, Chen G, et al. Study on aquathermolysis of heavy oil at relatively low temperature catalyzed by water-soluble complexes [J]. Journal of Fuel Chemistry and Technology, 2014, 42(4): 443-448. | |
15 | 范洪富, 刘永健, 赵晓非, 等. 金属盐对辽河稠油水热裂解反应影响研究[J]. 燃料化学学报, 2001, 29(5): 430-433. |
Fan H F, Liu Y J, Zhao X F, et al. Studies on effect of metal ions on aquathermolysis reaction of Liaohe heavy oils under steam treatment[J]. Journal of Fuel Chemistry and Technology, 2001, 29(5): 430-433. | |
16 | 王杰祥, 樊泽霞, 任熵, 等. 单家寺稠油催化水热裂解实验研究[J]. 油田化学, 2006, 23(3): 205-208. |
Wang J X, Fan Z X, Ren S, et al. An Experimental study on catalytic aquathermolysis of Shanjiasi heavy oil[J]. Oilfield Chemistry, 2006, 23(3): 205-208. | |
17 | 樊泽霞, 赵福麟, 王杰祥, 等. 超稠油供氢水热裂解改质降黏研究[J]. 燃料化学学报, 2006, 34(3): 315-318. |
Fan Z X, Zhao F L, Wang J X, et al. Upgrading and viscosity reduction of super heavy oil by aqua-thermolysis with hydrogen donor[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 315-318. | |
18 | 成浪, 李玲, 陆江银, 等. 油酸改性Fe2(MoO4)3用于稠油水热催化降黏的研究[J]. 石油炼制与化工, 2019, 50(7): 31-37. |
Cheng L, Li L, Lu J Y, et al. Experimental study on oleic acid modified Fe2(MoO4)3 for catalytic aquathermolysis of heavy oil[J]. Petroleum Processing and Petrochemicals, 2019, 50(7): 31-37. | |
19 | 冯旭阳, 王强, 吕文东, 等. 磺化型有机金属催化剂在稠油降黏改质中的应用[J]. 精细石油化工, 2018, 35(6): 16-20. |
Feng X Y, Wang Q, Lyu W D, et al. Application of sulfonated organometallic catalyst in viscosity reducing of heavy oil[J]. Speciality Petrochemicals, 2018, 35(6): 16-20. | |
20 | Tang X D, Zhu H, Li J J, et al. Catalytic aquathermolysis of heavy oil with oil-soluble multicomponent acrylic copolymers combined with Cu2+[J]. Petroleum Science and Technology, 2015, 33: 1721-1727. |
21 | 朱海. 稠油高分子聚合物双功能水热催化改质催化剂的制备与评价[D]. 成都: 西南石油大学, 2016. |
Zhu H. Preparation and evaluation of difunctional aquathermolysis polymer-catalyst for heavy oil[D]. Chengdu: Southwest Petroleum University, 2015. | |
22 | 吴川, 雷光伦, 姚传进, 等. 双亲催化剂作用超稠油水热裂解降黏机理研究[J]. 燃料化学学报, 2010, 38(6): 684-690. |
Wu C, Lei G L, Yao C J, et al. Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 684-690. | |
23 | 黄佳, 江航, 赵长虹, 等. 复配纳米催化剂在稠油降黏中的应用及其机理[J]. 中国粉体技术, 2020, 26(1): 68-74. |
Huang J, Jiang H, Zhao C H, et al. Effects and mechanism of combined nano-catalysts on viscosity reduction of heavy oil [J]. China Powder Science and Technology, 2020, 26(1): 68-74. | |
24 | 李彦平, 张辉, 崔盈贤, 等. 双功能金属纳米晶/水合肼体系催化稠油原位裂解加氢降黏改质[J]. 石油学报(石油加工), 2019, 35(3): 540-547. |
Li Y P, Zhang H, Cui Y X, et al. In-situ viscosity reduction for heavy oil through catalytic hydrocracking with bifunctional metal nanocrystals/hydrazine hydrate system[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(3): 540-547. | |
25 | 周明辉, 孙文杰, 李克文. 纳米催化剂辅助超稠油氧化改质实验研究[J]. 中国科学(技术科学), 2017, 47(2): 197-203. |
Zhou M H, Sun W J, Li K W. Experimental research of nano catalyst assisted oxidization upgrading of super heavy oil[J]. Scientia Sinica (Technologica), 2017, 47(2): 197-203. | |
26 | 马占芳, 司国丽, 初一鸣, 等. 三角银纳米柱的研究进展[J]. 化学进展, 2009, 21: 1847-1856. |
Ma Z F, Si G L, Chu Y M, et al. Advances on triangular silver nanoprisms[J]. Progress in Chemistry, 2009, 21: 1847-1856. | |
27 | Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control[J]. Adv. Mater., 2010, 22: 1781-1804. |
28 | 潘庆谊, 徐甲强. 微乳液法纳米SnO2材料的合成、结构与气敏性能[J]. 无机材料学报, 1999, 14: 83-89. |
Pan Q Y, Xu J Q. Preparation, microstructure and gas sensing properties of nanosized SnO2 materials made by microemulsions[J]. Journal of Inorganic Materials, 1999, 14: 83-89. | |
29 | 成国祥, 唐懿, 沈锋, 等. 水/Span85-Tween60/环己烷微乳液及纳米复合微粒制备[J]. 天津大学学报(自然科学与工程技术版), 2000, 33: 401-235. |
Cheng G X, Tang Y, Shen F, et al. Study on H2O/Span85-Tween60/cyclohexane microemulsions[J]. Journal of Tianjin University (Science and Technology), 2000, 33: 401-235. | |
30 | 马维平, 孙洪巍, 苗芳, 等. 十六烷基三甲基溴化铵/正丁醇/环己烷/水微乳液制备纳米粉体的研究[J]. 硅酸盐通报, 2008, 27: 645-648. |
Ma W P, Sun H W, Miao F, et al. Influencing factors of microemulsion microstructure of cetyltrimethyl ammonium bromide/n-butanol/cyclohexane/water[J]. Bulletin of the Chinese Ceramic Society, 2008, 27: 645-648. | |
31 | 唐晓东, 邓刘扬, 李晶晶, 等. 稠油催化改质降黏的实验研究[J]. 精细化工, 2016, 33(6): 699-702. |
Tang X D, Deng L Y, Li J J, et al. Experimental study on catalytic upgrading and viscosity reduction of heavy oil[J]. Fine Chemicals, 2016, 33(6): 699-702. | |
32 | 李芳芳, 杨胜来, 高启超, 等. 化学生热催化裂解复合降黏体系提高稠油采收率技术[J]. 油田化学, 2015, 32(1): 93-97. |
Li F F, Yang S L, Gao Q C, et al. Chemical heat generating and catalytic cracking complex viscosity reduction system for heavy oil EOR[J]. Oilfield Chemistry, 2015, 32(1): 93-97. | |
33 | Zhang Z Y, Maria B, Daulat M. Experimental study of in-situ upgrading for heavy oil using hydrogen donors and catalyst under steam injection condition[C]. SPE157981, 2012. |
34 | Franco C A, Mejia J M. Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts[C]. SPE179699-MS, 2016. |
35 | Carlos R, Pedro P A. In-situ heavy oil upgrading through ultra-catalyst injection in naturally fractured reservoirs: experimental section[C]. SPE180154-MS, 2016. |
36 | Luky H, Yaser S, Ole T. Experimental investigation of decalin and metal nanoparticles-assisted bitumen upgrading during catalytic aquathermolysis[C]. SPE167807, 2014. |
37 | 李伟, 朱建华, 齐建华. 纳米Ni催化剂在超稠油水热裂解降黏中的应用研究[J]. 燃料化学学报, 2007, 35(2): 176-180. |
Li W, Zhu J H, Qi J H. Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 176-180. | |
38 | 于波. 辽河稠油催化降黏研究[D]. 青岛: 中国石油大学(华东), 2007. |
Yu B. Study on visbreaking of Liaohe heavy oil with catalyst[D]. Qingdao: China University of Petroleum, 2007. | |
39 | Shah A, Fishwick R P, Leeke G, et al. Experimental optimization of catalytic process in situ for heavy-oil and bitumen upgrading[C]. SPE136870, 2010. |
40 | 张会成, 邓文安, 阙国和. 胜利渣油在供氢剂和溶剂下的热裂化特性研究[J]. 石油学报(石油加工), 1997, 13(6): 17-22. |
Zhang H C, Deng W A, Que G H. Study on thermal reaction characteristics of Shengli vacuum residue with hydrogen donor and solvent[J]. Journal of Petroleum (Petroleum Processing), 1997, 13(6): 17-22. | |
41 | 李博. 辽河油田催化供氢稠油改质的实验[J]. 东北石油大学学报, 2004, 28(4): 24-26. |
Li B. Experiments of in-situ upgrading heavy oil by means of catalyst and hydrogen donor[J]. Journal of Northeast Petroleum University, 2004, 28(4): 24-26. | |
42 | 刘永建, 赵法军, 赵国, 等. 稠油的甲酸供氢催化水热裂解改质实验研究[J]. 油田化学, 2008, 25(2): 133-136. |
Liu Y J, Zhao F J, Zhao G, et al. Study on upgrading heavy oil by catalytic aquathermolysis using formic acid as hydrogen donor[J]. Oilfield Chemistry, 2008, 25(2): 133-136. | |
43 | 赵法军. 稠油井下改质降黏机理及应用研究[D]. 大庆: 大庆石油学院, 2008. |
Zhao F J. Research on mechanism and application of downhole viscosity reduction upgrading of heavy oil[D]. Daqing: Daqing Petroleum Institute, 2008. | |
44 | Chen E Y, Liu Y J, Liang M, et al. A study on the viscosity reduction of Liaohe heavy oil by oil-soluble nickel oleate[J]. Journal of Daqing Petroleum Institute, 2010, 34(6): 68-71. |
45 | Liu Y, Chen E, Wen S, et al. The preparation and evaluation of oil-soluble catalyst for aquathermolysis of heavy oil[J]. Chemical Engineering of Oil & Gas, 2005, 34(6): 511-512. |
46 | Qin W L, Xiao Z L. The researches on upgrading of heavy crude oil by catalytic aquathermolysis treatment using a new oil-soluble catalyst[J]. Advanced Materials Research, 2012, 608/609: 1428-1432. |
47 | Yusuf A, Al-Hajri R S, Al-Waheibi Y M, et al. In-situ upgrading of Omani heavy oil with catalyst and hydrogen donor[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 102-112. |
48 | Feoktistov D A, Kayukova G P, Vakhin A V, et al. Catalytic aquathermolysis of high-viscosity oil using iron, cobalt, and copper tallates[J]. Chemistry and Technology of Fuels and Oils, 2018, 53(6): 905-912. |
49 | Zhao X, Tan X, Liu Y. Behaviors of oil-soluble catalyst for aquathermolysis of heavy oil[J]. Industrial Catalysis, 2008, 16(11): 31-34. |
50 | Foss L, Petrukhina N, Kayukova G, et al. Changes in hydrocarbon content of heavy oil during hydrothermal process with nickel, cobalt, and iron carboxylates[J]. Journal of Petroleum Science and Engineering, 2018, 169: 269-276. |
51 | Fixari B, Peureux S, Elmouchnino J, et al. New developments in deep hydroconversion of heavy oil residues with dispersed catalysts(1): Effect of metals and experimental conditions[J]. Energy & Fuels, 1994, 8(3): 588-592. |
52 | Wu C, Su J, Zhang R, et al. The use of amphiphilic nickel chelate for catalytic aquathermolysis of extra-heavy oil under steam injection conditions[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(13): 1437-1444. |
53 | Chao K, Chen Y, Li J, et al. Upgrading and visbreaking of super-heavy oil by catalytic aquathermolysis with aromatic sulfonic copper[J]. Fuel Processing Technology, 2012, 104: 174-180. |
54 | Conoco Phillips Company, Corporation Harris. In situ radio frequency catalytic upgrading: US9004164 B2[P]. 2015-04-14. |
55 | Energy Underground, Inc. In-situ upgrading of bitumen or heavy oil: US2013/0140021 A1[P]. 2013-06-06. |
56 | Chevron U.S.A. Inc. Method for upgrading situ heavy oil: US2016/0177691 A1[P]. 2016-06-23. |
57 | Gilman A H, Joseph A A. Integrated in situ retorting and refining of heavy-oil and tar sand deposits: US9085972 B1[P]. 2015-07-21. |
58 | Stephen R. Oil sands get wired-seeking more oil, fewer emissions[C]. SPE0912-0034-JPT, 2012. |
59 | 宋建平, 陈建华, 刘斌. 低频脉冲波强化采油技术研究及试验[J]. 石油钻采工艺, 1994, 16(6): 81-87. |
Song J P, Chen J H, Liu B. Study and test of enhanced oil recovery technique using low-frequency pulse wave[J]. Oil Drilling & Production Technology, 1994, 16(6): 81-87. | |
60 | 郭新超, 李勇龙, 张武涛, 等. 脉冲波开采稠油装置及脉冲波开采稠油的方法: 108979605A[P]. 2018-12-11. |
Guo X C, Li Y L, Zhang W T, et al. Pulse wave heavy oil recovery equipment and method: 108979605A[P]. 2018-12-11. | |
61 | 聂泳培, 李铁建, 陈壮志, 等. 一种利用聚能脉冲进行稠油开采的设备及其使用方法: 108386168A[P]. 2018-08-10. |
Ni Y P, Li T J, Chen Z Z, et al. An equipment for heavy oil recovery using a cumulative energy pulse and its application method: 108386168A[P]. 2018-08-10. | |
62 | 孙仁远, 王连保, 彭秀君, 等. 稠油超声波降黏试验研究[J]. 油气田地面工程, 2001, 20(5): 22-23. |
Sun R Y, Wang L B, Peng X J, et al. Experimental study on ultrasonic viscosity reduction of heavy oil [J]. Oil-Gas Field Surface Engineering, 2001, 20(5): 22-23. | |
63 | Bjorndalen N, Islam M R. The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well[J]. Journal of Petroleum Science and Engineering, 2004, 43: 139-150. |
64 | 王颖. 稠油微波加热降黏机理的研究[D]. 北京: 中国科学院电子学研究所, 2002. |
Wang Y. The study of the mechanism on the viscosity reduction of the heavy oil radiated by the microwave[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2002. | |
65 | Mozafari M, Nasri Z. Operational conditions effects on Iranian heavy oil upgrading using microwave irradiation[J]. Journal of Petroleum Science and Engineering, 2017, 151: 40-48. |
66 | Gopinath R, Dalai A K, Adjaye J. Effects of ultrasound treatment on the upgradation of heavy oil[J]. Energy and Fuels, 2006, 20(1): 271-277. |
67 | Wang Z, Wang H, Guo Q. Effect of ultrasonic treatment on the properties of petroleum coke oil slurry[J]. Energy and Fuels, 2006, 20(5): 1959-1964. |
68 | Ershov M A, Baranov D A, Mullakaev M S. Reducing viscosity of paraffinic oils in ultrasonic field[J]. Chemical and Petroleum Engineering, 2011, 47(7/8): 457-461. |
69 | Gollapudi U K, Bang S S, Islam M R. Ultrasonic treatment for removal of asphaltene deposits during petroleum production[J]. Society of Petroleum Engineers, 1994, 273(77): 653-660. |
70 | Hamidi H, Mohammadian E, Junin R, et al. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium[J]. Ultrasonics, 2014, 54(2): 655-662. |
71 | 丁雨溪, 仲笑君, 孔德晶. 基于电磁技术改进原油降黏参数研究[J]. 当代化工, 2017, 46(8): 1600-1603. |
Ding Y X, Zhong X J, Kong D J. Study on improvement of reducing parameters of crude oil based on electromagnetic technology[J]. Contemporary Chemical Industry, 2017, 46(8): 1600-1603. | |
72 | 孙雪琼, 王钊, 宋文磊. 基于高频交变复合磁场的防蜡降黏技术[J]. 油气田地面工程, 2012, 31(6): 15-16. |
Sun X Q, Wang Z, Song W L. Anti-wax and viscosity-reducing technology based on high frequency alternating magnetic field[J]. Oil-Gas Field Surface Engineering, 2012, 31(6): 15-16. | |
73 | 魏爱军, 金鑫涛, 门凤银. 原油高频降黏时效性实验研究[J]. 电子科技, 2011, 24(1): 109-111. |
Wei A J, Jin X T, Men F Y. Experimental study on timeliness of crude oil high-frequency viscosity reduction[J]. Electronic Science and Technology, 2011, 24(1): 109-111. | |
74 | 马秀波, 郑海霞, 尹教建, 等. 磁处理原油防蜡降黏的机理[J]. 西安石油大学学报(自然科学版), 2005, (4): 50-52. |
Ma X B, Zheng H X, Yin J J, et al. Paraffin-controlling viscosity-reducing effect of magnetic treatment on crude oil[J]. Journal of Xi'an Petroleum University (Natural Science Edition), 2005, (4): 50-52. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[9] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[13] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[14] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[15] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||