CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5821-5830.DOI: 10.11949/0438-1157.20200626
• Material science and engineering, nanotechnology • Previous Articles Next Articles
WANG Boxiang1,2(),LIU Li1(),LI Jia2,LU Yanhua2,CHENG Dehong2,JIN Huiyu1,ZHOU Ling1
Received:
2020-05-21
Revised:
2020-07-08
Online:
2020-12-05
Published:
2020-12-05
Contact:
LIU Li
王勃翔1,2(),刘丽1(),李佳2,路艳华2,程德红2,靳惠宇1,周凌1
通讯作者:
刘丽
作者简介:
王勃翔(1989—),男,博士研究生,基金资助:
CLC Number:
WANG Boxiang,LIU Li,LI Jia,LU Yanhua,CHENG Dehong,JIN Huiyu,ZHOU Ling. Synthesis and properties of thermosensitive hydrogel of allyl silk fibroin[J]. CIESC Journal, 2020, 71(12): 5821-5830.
王勃翔,刘丽,李佳,路艳华,程德红,靳惠宇,周凌. 烯丙基丝素蛋白温敏水凝胶的合成及性能研究[J]. 化工学报, 2020, 71(12): 5821-5830.
Add to citation manager EndNote|Ris|BibTeX
样品 | ASF-AGE/NIPAAm质量比 | ASF-AGE/mg | NIPAAm/ml | APS/mg | 5%TEMED/μl |
---|---|---|---|---|---|
pAGN1 | 1/9 | 52.5 | 6.3 | 0.95 | 19 |
pAGN2 | 2/8 | 105 | 5.6 | 0.84 | 16.8 |
pAGN3 | 3/7 | 157.5 | 4.9 | 0.74 | 14.8 |
pAGN4 | 4/6 | 210 | 4.2 | 0.63 | 12.6 |
pAGN5 | 5/5 | 262.5 | 3.5 | 0.53 | 10.6 |
Table 1 Reaction conditions of preparation for p(ASF-AGE-NIPAAm) gel
样品 | ASF-AGE/NIPAAm质量比 | ASF-AGE/mg | NIPAAm/ml | APS/mg | 5%TEMED/μl |
---|---|---|---|---|---|
pAGN1 | 1/9 | 52.5 | 6.3 | 0.95 | 19 |
pAGN2 | 2/8 | 105 | 5.6 | 0.84 | 16.8 |
pAGN3 | 3/7 | 157.5 | 4.9 | 0.74 | 14.8 |
pAGN4 | 4/6 | 210 | 4.2 | 0.63 | 12.6 |
pAGN5 | 5/5 | 262.5 | 3.5 | 0.53 | 10.6 |
1 | Chen Y S, Tsou P C, Lo J M, et al. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering[J]. Biomaterials, 2013, 34(30): 7328-7334. |
2 | Nagase K, Yamato M, Kanazawa H, et al. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications[J]. Biomaterials, 2018, 153: 27-48. |
3 | Hu X, Cebe P, Weiss A S, et al. Protein-based composite materials[J]. Materials Today, 2012, 15(5): 208-215. |
4 | Zhang Y Q. Natural silk fibroin as a support for enzyme immobilization[J]. Biotechnology Advances, 1998, 16(5): 961-971. |
5 | Wang P, Qi C L, Yu Y Y, et al. Covalent immobilization of catalase onto regenerated silk fibroins via tyrosinase-catalyzed cross-linking[J]. Applied Biochemistry & Biotechnology, 2015, 177(2): 472-485. |
6 | Lee K H, Ki C S, Baek D H, et al. Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme[J]. Fibers and Polymers, 2005, 6(3): 181-185. |
7 | Wu M H, Zhu L, Zhou Z Z, et al. Coimmobilization of naringinases on silk fibroin nanoparticles and its application in food packaging[J]. Journal of Nanoparticles, 2013, (2013): 901401. |
8 | Yang B S, Li J, Wang H. Research progress in sequences comparison and crystal structure of silk fibroin[J]. Advanced Materials Research, 2013, 664: 443-448. |
9 | Kundu B, Kurland N E, Bano S, et al. Silk proteins for biomedical applications: bioengineering perspectives[J]. Progress in Polymer Science, 2014, 39(2): 251-267. |
10 | Omenetto F G, Kaplan D L. New opportunities for an ancient material[J]. Science, 2010, 329(5991): 528-531. |
11 | Pal S, Kundu J, Talukdar S, et al. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini[J]. Macromolecular Bioscience, 2013, 13(8): 1020-1035. |
12 | 田丽, 吴明华, 邢幽芳. 异氰酸酯基封端聚醚改性聚硅氧烷在真丝抗皱整理中的应用[J]. 丝绸, 2019, 56(5): 1-7. |
Tian L, Wu M H, Xing Y F. Application of polysiloxane modified by isocyanate terminated polyether in silk anti-wrinkle finishing[J]. Journal of Silk, 2019, 56(5): 1-7. | |
13 | Shiozaki H, Tanaka Y. Reactivity of mono-epoxides toward silk fibroin[J]. Die Makromolekulare Chemie, 1971, 143(1): 25-45. |
14 | Andrew C, Kyoung D S, Hyungjun Y, et al. Bulk poly(N-isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering [J]. Biomaterials Science, 2019, 7: 2277-2287. |
15 | Tourrette A, Geyter N D, Jocic D, et al. Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface[J]. Colloids & Surfaces a Physicochemical & Engineering Aspects, 2009, 352(1/2/3): 126-135. |
16 | Heskins M, Guillet J E. Solution properties of poly(N-isopropylacrylamide)[J]. Journal of Macromolecular Science Part A Chemistry, 1968, 2(8): 1441-1455. |
17 | Tong X, Yang F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties[J]. Biomaterials, 2014, 35(6): 1807-1815. |
18 | Akimoto J, Nakayama M, Okano T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors[J]. Journal of Controlled Release, 2014, 193: 2-8. |
19 | Aya A, Erika N, Kenichi N, et al. Mesenchylmal stem cell culture on poly(N-isopropylacrylamide) hydrogel with repeated thermo-stimulation[J]. International Journal of Molecular Sciences, 2018, 19(4): 1253-1263. |
20 | Sung H W, Cheng W H, Chiu I S, et al. Studies on epoxy compound fixation[J]. Journal of Biomedical Materials Research, 1996, 33(3): 177-186. |
21 | 余喜讯, 万昌秀, 陈槐卿. 生物性组织工程血管支架的制备及其内皮化研究[J]. 四川大学学报(自然科学版), 2005, 37(6): 97-101. |
Yu X X, Wan C X, Chen H Q. Preparation of biological tissues scaffold for tissue-engineered blood vessel and its endothelializa[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(6): 97-101. | |
22 | Zeeman R, Dijkstra P J, Wachem P B V, et al. Crosslinking and modification of dermal sheep collagen using 1, 4-butanediol diglycidyl ether[J]. Journal of Biomedical Materials Research, 1999, 46(3): 424-433. |
23 | Silva S S, Kundu B, Lu S, et al. Chinese oak tasar silkworm Antheraea pernyi silk proteins: current strategies and future perspectives for biomedical applications [J]. Macromolecular Bioscience, 2019, 19(3): 1800252. |
24 | Gil E S, Park S H, Tien L W, et al. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels[J]. Langmuir, 2010, 26(19): 15614-15624. |
25 | Zhang J N, Cui Z F, Field R, et al. Thermo-responsive microcarriers based on poly(N-isopropylacrylamide)[J]. European Polymer Journal, 2015, 67: 346-364. |
26 | Zhang P, Wang W. Preparation of silk fibroin-chitosan scaffolds and their properties [J]. Chinese Journal of Reparative & Reconstructive Surgery, 2013, 27(12): 1517-1522. |
27 | Discher D E, Janmey P, Wang Y L. Tissue cells feel and respond to the stiffness of their substrate[J]. Science, 2005, 310: 1139-1143. |
28 | Rennerfeldt D A, Renth A N, Talata Z, et al. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering[J]. Biomaterials, 2013, 34(33): 8241-8257. |
29 | Baek K, Clay N E, Qin E C, et al. In situ assembly of the collagen-polyacrylamide interpenetrating network hydrogel: enabling decoupled control of stiffness and degree of swelling [J]. European Polymer Journal, 2015, 72: 413-422. |
30 | Singh N, Rahatekar S S, Koziol K K, et al. Directing chondrogenesis of stem cells with specific blends of cellulose and silk [J]. Biomacromolecules, 2013, 14: 1287-1298. |
31 | Foss C, Merzari E, Migliaresi C, et al. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering[J]. Biomacromolecules, 2013, 14(1): 38-47. |
[1] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[2] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[3] | Wangkai XIANG, Yuanyuan LIU, Ying ZHENG, Pengju PAN. Preparation of medium- and high-molecular-weight poly(glycolic acid) by melt/solid-state polycondensation [J]. CIESC Journal, 2023, 74(2): 933-940. |
[4] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[5] | Yuxiao LI, Qingyue WANG, Khak Ho LIM, Xiaohui LI, Erlita MASTAN, Bo PENG, Wenjun WANG. Characterization technique for kinetic coefficients of free radical polymerization [J]. CIESC Journal, 2023, 74(2): 559-570. |
[6] | Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193. |
[7] | Xuesong WANG, Xiangyu ZENG, Cuimei BO, Shuqi TANG, Chao DONG, Jun LI, Quanling ZHANG, Xiaoming JIN, Shengli YE. Dynamic economic optimal control for PTFE batch polymerization process with free terminal [J]. CIESC Journal, 2022, 73(9): 3973-3982. |
[8] | Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network [J]. CIESC Journal, 2022, 73(9): 4173-4186. |
[9] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[10] | Zhemiao YU, Zhi WANG, Menglong SHENG, Guangyu XING, Jixiao WANG. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization [J]. CIESC Journal, 2022, 73(7): 3273-3286. |
[11] | Wentao LI, Huijuan LIN, Hai ZHONG. LiF-rich SEI generated by in-situ gel polymer electrolyte process for lithium metal rechargeable batteries [J]. CIESC Journal, 2022, 73(7): 3240-3250. |
[12] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
[13] | Shiyi GE, Yao YANG, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation [J]. CIESC Journal, 2022, 73(4): 1585-1596. |
[14] | Chaoqun XU, Juan YU, Yimin FAN, Jifu WANG, Fuxiang CHU. Chemical modification of nanocellulose via atom transfer radical polymerization: strategy, applications and challenges [J]. CIESC Journal, 2022, 73(3): 1022-1043. |
[15] | Guodong ZHONG, Chaohe DENG, Yang WANG, Jiayun WANG, Ruzhu WANG. Numerical simulation and verification of heat and mass transfer characteristics in honeycomb hydrogel adsorption bed [J]. CIESC Journal, 2022, 73(3): 1083-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||