CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5831-5841.DOI: 10.11949/0438-1157.20200597
• Material science and engineering, nanotechnology • Previous Articles Next Articles
YUAN Hefeng1(),MA Zizai2,WANG Shumin1,LI Jinping2,WANG Xiaoguang1,2()
Received:
2020-05-18
Revised:
2020-07-20
Online:
2020-12-05
Published:
2020-12-05
Contact:
WANG Xiaoguang
原荷峰1(),马自在2,王淑敏1,李晋平2,王孝广1,2()
通讯作者:
王孝广
作者简介:
原荷峰(1989—),女,博士研究生,基金资助:
CLC Number:
YUAN Hefeng,MA Zizai,WANG Shumin,LI Jinping,WANG Xiaoguang. Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020, 71(12): 5831-5841.
原荷峰,马自在,王淑敏,李晋平,王孝广. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831-5841.
Add to citation manager EndNote|Ris|BibTeX
Fig.3 Microstructure characterization of Co3O4/NF and VO-Co3O4/NF(The lattice fringes and amorphous domain of VO-Co3O4/NF are labeled in solid and doted ellipse respectively in (e))
1 | Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: review and recommendation [J]. Int. J. Hydrogen Energy, 2019, 44(29): 15072-15086. |
2 | Jamesh M I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media [J]. J. Power Sources, 2016, 333: 213-236. |
3 | Yang M Q, Wang J, Wu H, et al. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting [J]. Small, 2018, 14(15): 1703323. |
4 | Tang C, Zhang R, Lu W B, et al. Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation [J]. Adv. Mater., 2017, 29(2): 1602441. |
5 | 黄颖彬, 张敏, 柳鹏,等. 氧还原和析氧反应的双功能电催化剂―氮磷共掺碳负载四氧化三钴 [J]. 催化学报, 2016, 37(8): 1249-1256. |
Huang Y B, Zhang M, Liu P, et al. Co3O4 supported on N, P-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions [J]. Chinese J. Catal., 2016, 37(8): 1249-1256. | |
6 | Yan D F, Chen R, Xiao Z H, et al. Engineering the electronic structure of Co3O4 by carbon-doping for efficient overall water splitting [J]. Electrochim. Acta, 2019, 303: 316-322. |
7 | Cai Z, Bi Y M, Hu E Y, et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis [J]. Adv. Energy Mater., 2018, 8(3): 1701694. |
8 | Tong Y, Mao H N, Xu Y L, et al. Oxygen vacancies confined in Co3O4 quantum dots for promoting oxygen evolution electrocatalysis [J]. Inorg. Chem. Front., 2019, 6(8): 2055-2060. |
9 | Cheng G H, Kou T Y, Zhang J, et al. O22-/O-functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting [J]. Nano Energy, 2017, 38: 155-166. |
10 | Zhang L J, Li H J, Li K Z, et al. Morphology-controlled fabrication of Co3O4 nanostructures and their comparative catalytic activity for oxygen evolution reaction [J]. J. Alloys Comp., 2016, 680: 146-154. |
11 | Yang L, Zhou H, Qin X, et al. Cathodic electrochemical activation of Co3O4 nanoarrays: a smart strategy to significantly boost the hydrogen evolution activity [J]. Chem. Commun., 2018, 54(17): 2150-2153. |
12 | Liu Y W, Xiao C, Li Z, et al. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials [J]. Adv. Energy Mater., 2016, 6(23): 1600436. |
13 | Zhang Z, Zhang T R, Lee J Y. Enhancement effect of borate doping on the oxygen evolution activity of α-nickel hydroxide [J]. ACS Appl. Nano. Mater., 2018, 1(2): 751-758. |
14 | Zhuang L Z, Jia Y, He T W, et al. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity [J]. Nano Res., 2018, 11(6): 3509-3518. |
15 | Liu P F, Yang S, Zhang B, et al. Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting [J]. ACS Appl. Mater. Interfaces., 2016, 8(50): 34474-34481. |
16 | Song F, Schenk K, Hu X L. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes [J]. Energ. Environ. Sci., 2016, 9(2): 473-477. |
17 | Yang H Y, Chen Z L, Guo P F, et al. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction [J]. Appl. Catal. B-Environ., 2020, 261: 118240. |
18 | Peng S J, Gong F, Li L L, et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis [J]. J. Am. Chem. Soc., 2018, 140(42): 13644-13653. |
19 | Wei R J, Fang M, Dong G F, et al. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation [J]. ACS Appl. Mater. Interfaces, 2018, 10(8): 7079-7086. |
20 | Liu D L, Wang C H, Yu Y F, et al. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides [J]. Chem, 2019, 5(2): 376-389. |
21 | Hu Q, Huang X W, Wang Z Y, et al. Slower removing ligands of metal organic frameworks enables higher electrocatalytic performance of derived nanomaterials [J]. Nano Lett., 2014, 14(6): 3309-3313. |
22 | Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction [J]. Angew. Chem. Int. Ed., 2016, 55: 5277-5281. |
23 | 杨永馨, 徐征, 赵谡玲,等. 形貌可控的NaMgF3: Gd3+纳米晶体的合成及其光致发光特性研究[J]. 光谱学与光谱分析, 2020, 40(1): 10-14. |
Yang Y X, Xu Z, Zhao S L, et al. Shape-controlled synthesis of NaMgF3: Gd3+ nanocrystals and its upconversion photoluminescence properties [J]. Spectrosc. Spect. Anal., 2020, 40(1): 10-14. | |
24 | Han X P, He G W, He Y, et al. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis [J]. Adv. Energy Mater., 2018, 8(10): 1702222. |
25 | Zhang J J, Wang H H, Zhao T J, et al. Oxygen vacancy engineering of Co3O4 nanocrystals through coupling with metal support for water oxidation [J]. ChemSusChem, 2017, 10: 2875-2879. |
26 | Gao R, Li Z Y, Zhang X L, et al. Carbon-dotted defective CoO with oxygen vacancies: a synergetic design of bifunctional cathode catalyst for Li-O2 batteries [J]. ACS Catal., 2016, 6(1): 400-406. |
27 | Liang Y, Yang Y, Xu K, et al. Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction [J]. J. Catal., 2020, 381: 63-69. |
28 | Ji D, Peng L S, Shen J J, et al. Inert V2O3 oxide promotes the electrocatalytic activity of Ni metal for alkaline hydrogen evolution [J]. Chem. Commun., 2019, 55(22): 3290-3293. |
29 | Wu C, Liu D, Li H, et al. Molybdenum carbide-decorated metallic cobalt@nitrogen-doped carbon polyhedrons for enhanced electrocatalytic hydrogen evolution [J]. Small, 2018, 14(16): 1704227. |
30 | 王文峰, 秦山, 张荣荣, 等. 纳米八面体形FeP@PC的制备及催化析氢性能[J]. 高等学校化学学报, 2019, 40(9): 1979-1987. |
Wang W F, Qin S, Zhang R R, et al. Preparation of UIO-66-based porous nano-octahedral FeP@PC for efficient and durable hydrogen evolution [J]. Chem. J. Chinese U., 2019, 40(9): 1979-1987. | |
31 | Wang H Y, Hung S F, Chen H Y, et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4 [J]. J. Am. Chem. Soc., 2016, 138(1): 36-39. |
32 | Bergmann A, Jones T E, Martinez-Moreno E, et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction [J]. Nat. Catal., 2018, 1(9): 711-719. |
33 | Masa J, Weide P, Peeters D, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution [J]. Adv. Energy Mater., 2016, 6(6): 1502313. |
34 | Tung C W, Hsu Y Y, Shen Y P, et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution [J]. Nat. Commun., 2015, 6: 8106. |
35 | Chen Z, Cai L, Yang X F, et al. Reversible structural evolution of NiCoOxHy during the oxygen evolution reaction and identification of the catalytically active phase [J]. ACS Catal., 2017, 8(2): 1238-1247. |
36 | McCrory C C L, Jung S, Ferrer I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices [J]. J. Am. Chem. Soc., 2015, 137(13): 4347-4357. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[11] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[12] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[13] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||